【題目】探究:
如圖①,在△ABC中,點(diǎn)D、E、F分別在邊AB、AC、CB上,且DE∥BC,EF∥AB,若∠ABC=65°,求∠DEF的度數(shù).請(qǐng)將下面的解答過程補(bǔ)充完整,并填空(理由或數(shù)學(xué)式):
解:∵DE∥BC( )
∴∠DEF= ( )
∵EF∥AB
∴ =∠ABC( )
∴∠DEF=∠ABC( )
∵∠ABC=65°
∴∠DEF=
應(yīng)用:
如圖②,在△ABC中,點(diǎn)D、E、F分別在邊AB、AC、BC的延長(zhǎng)線上,且DE∥BC,EF∥AB,若∠ABC=β,則∠DEF的大小為 (用含β的代數(shù)式表示).
【答案】探究:見解析;應(yīng)用:見解析.
【解析】
探究:依據(jù)兩直線平行,內(nèi)錯(cuò)角相等以及兩直線平行,同位角相等,即可得到∠DEF=∠ABC,進(jìn)而得出∠DEF的度數(shù).應(yīng)用:依據(jù)兩直線平行,同位角相等以及兩直線平行,同旁內(nèi)角互補(bǔ),即可得到∠DEF的度數(shù).
解:探究:∵DE∥BC(已知)
∴∠DEF=∠CFE(兩直線平行,內(nèi)錯(cuò)角相等)
∵EF∥AB
∴∠CFE=∠ABC(兩直線平行,同位角相等)
∴∠DEF=∠ABC(等量代換)
∵∠ABC=65°
∴∠DEF=65°
故答案為:已知;∠CFE;兩直線平行,內(nèi)錯(cuò)角相等;∠CFE;兩直線平行,同位角相等;等量代換;65°.
應(yīng)用:∵DE∥BC
∴∠ABC=∠D=β
∵EF∥AB
∴∠D+∠DEF=180°
∴∠DEF=180°﹣∠D=180°﹣β,
故答案為:180°﹣β.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是小明設(shè)計(jì)的“作角的平分線”的尺規(guī)作圖的過程.
已知:如圖1,.
求作:射線,使它平分.
作法:如圖2,
①以點(diǎn)為圓心,任意長(zhǎng)為半徑作弧,交于點(diǎn),交于點(diǎn);
②分別以點(diǎn),為圓心,以大于的同樣長(zhǎng)為半徑作弧,兩弧交于點(diǎn);
③作射線.
所以射線就是所求作的射線.
根據(jù)小明設(shè)計(jì)的尺規(guī)作圖的過程,
(1)使用直尺和圓規(guī),補(bǔ)全圖形(保留作圖痕跡);
(2)完成下面的證明.
證明:連接,.
在和中,
∴≌( )(填推理的依據(jù)).
∴ (全等三角形的 相等).
即射線平分(角平分線定義).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解答下面的問題:
(1)如果a2+a=3,求a2+a+2015的值.
(2)已知a﹣b=﹣3,求3(b﹣a)2﹣5a+5b+5的值.
(3)已知a2+2ab=﹣3,ab﹣b2=﹣5,求4a2+ab+b2的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,AB=AC,D為△ABC所在平面內(nèi)的一點(diǎn),過D作DE∥AB,DF∥AC分別交直線AC,直線AB于點(diǎn)E,F.
(1)如圖1,當(dāng)點(diǎn)D在線段BC上時(shí),通過觀察分析線段DE、DF、AB之間的數(shù)量關(guān)系,并說明理由;
(2)如圖2,當(dāng)點(diǎn)D在直線BC上,其他條件不變時(shí),試猜想線段DE、DF、AB之間的數(shù)量關(guān)系(請(qǐng)直接寫出等式,不需證明);
(3)如圖3,當(dāng)點(diǎn)D是△ABC內(nèi)一點(diǎn),過D作DE∥AB,DF∥AC分別交直線AC,直線AB和直線BC于E、F和G. 試猜想線段DE、DF、DG與AB之間的數(shù)量關(guān)系(請(qǐng)直接寫出等式,不需證明).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】結(jié)合數(shù)軸與絕對(duì)值的知識(shí)回答下列問題:
(1)數(shù)軸上表示4和1的兩點(diǎn)之間的距離為|4﹣1|= ;表示5和﹣2兩點(diǎn)之間的距離為|5﹣(﹣2)|=|5+2|= ;一般地,數(shù)軸上表示數(shù)m和數(shù)n的兩點(diǎn)之間的距離等于|m﹣n|,如果表示數(shù)a和﹣2的兩點(diǎn)之間的距離是3,那么a= .
(2)若數(shù)軸上表示數(shù)a的點(diǎn)位于﹣4與2之間,求|a+4|+|a﹣2|的值;
(3)當(dāng)a= 時(shí),|a+5|+|a﹣1|+|a﹣4|的值最小,最小值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將矩形ABCD沿對(duì)角線AC翻折,點(diǎn)B落在點(diǎn)F處,FC交AD于E.
(1)求證:△AFE≌△CDF;
(2)若AB=4,BC=8,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市對(duì)教師試卷講評(píng)課中學(xué)生參與的深度和廣度進(jìn)行評(píng)價(jià),其評(píng)價(jià)項(xiàng)目為主動(dòng)質(zhì)疑、獨(dú)立思考、專注聽講、講解題目四項(xiàng).評(píng)價(jià)組隨機(jī)抽取了若干名初中生的參與情況,繪制了如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中所給的信息解答下列問題:
(1)這次評(píng)價(jià)中,一共抽查了名學(xué)生;
(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)如果全市有16萬(wàn)初中學(xué)生,那么在試卷講評(píng)課中,“獨(dú)立思考”的學(xué)生約有多少萬(wàn)人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AC=6,BC=8.
(1)用直尺和圓規(guī)作∠A的平分線,交BC于點(diǎn)D;(要求:不寫作法,保留作圖痕跡)
(2)SADC:SADB .(直接寫出結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】你能求(x﹣1)(x99+x98+x97+…+x+1)的值嗎?遇到這樣的問題,我們可以先思考一下,從簡(jiǎn)單的情形入手.先分別計(jì)算下列各式的值.
①(x﹣1)(x+1)=x2﹣1
②(x﹣1)(x2+x+1)=x3﹣1
③(x﹣1)(x3+x2+x+1)=x4﹣1
……
由此我們可以得到:(x﹣1)(x99+x98+x97+…+x+1)=
請(qǐng)你利用上面的結(jié)論,再完成下面兩題的計(jì)算:
(1)(﹣2)50+(﹣2)49+(﹣2)48+…+(﹣2)+1
(2)若x3+x2+x+1=0,求x2019的值
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com