某校九年級學(xué)習(xí)小組在探究學(xué)習(xí)過程中,用兩塊完全相同的且含60°角的直角三角板ABC與AFE按如圖

(1)所示位置放置放置,現(xiàn)將Rt△AEF繞A點按逆時針方向旋轉(zhuǎn)角α(0°<α<90°),如圖(2),AE與BC交于點M,AC與EF交于點N,BC與EF交于點P.

(1)求證:AM=AN;

(2)當(dāng)旋轉(zhuǎn)角α=30°時,四邊形ABPF是什么樣的特殊四邊形?并說明理由.

 

【答案】

解:(1)證明:∵用兩塊完全相同的且含60°角的直角三角板ABC與AFE按如圖(1)所示位置放置放置,現(xiàn)將Rt△AEF繞A點按逆時針方向旋轉(zhuǎn)角α(0°<α<90°),

∴AB=AF,∠BAM=∠FAN。

∵在△ABM和△AFN中,,

∴△ABM≌△AFN(ASA)。

∴AM=AN。

(2)當(dāng)旋轉(zhuǎn)角α=30°時,四邊形ABPF是菱形。理由如下:

連接AP,

∵∠α=30°,∴∠FAN=30°!唷螰AB=120°。

∵∠B=60°,∴AF∥BP!唷螰=∠FPC=60°。

∴∠FPC=∠B=60°。∴AB∥FP。

∴四邊形ABPF是平行四邊形。

∵AB=AF,∴平行四邊形ABPF是菱形。

【解析】(1)根據(jù)旋轉(zhuǎn)的性質(zhì)得出AB=AF,∠BAM=∠FAN,進而得出△ABM≌△AFN得出答案即可。

(2)利用旋轉(zhuǎn)的性質(zhì)得出∠FAB=120°,∠FPC=∠B=60°,即可得出四邊形ABPF是平行四邊形,再利用菱形的判定得出答案。 

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•婁底)某校九年級學(xué)習(xí)小組在探究學(xué)習(xí)過程中,用兩塊完全相同的且含60°角的直角三角板ABC與AFE按如圖(1)所示位置放置放置,現(xiàn)將Rt△AEF繞A點按逆時針方向旋轉(zhuǎn)角α(0°<α<90°),如圖(2),AE與BC交于點M,AC與EF交于點N,BC與EF交于點P.
(1)求證:AM=AN;
(2)當(dāng)旋轉(zhuǎn)角α=30°時,四邊形ABPF是什么樣的特殊四邊形?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年江西省九年級3月月考數(shù)學(xué)試卷(解析版) 題型:解答題

某校九年級學(xué)習(xí)小組在探究學(xué)習(xí)過程中,用兩塊完全相同的且含60°角的直角三角板ABCAFE按如圖(1)所示位置放置放置,現(xiàn)將RtAEFA點按逆時針方向旋轉(zhuǎn)角αα90°),如圖(2),AEBC交于點M,ACEF交于點N,BCEF交于點P

1)求證:AM=AN;

2)當(dāng)旋轉(zhuǎn)角α=30°時,四邊形ABPF是什么樣的特殊四邊形?并說明理由.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

某校九年級學(xué)習(xí)小組在探究學(xué)習(xí)過程中,用兩塊完全相同的且含60°角的直角三角板ABC與AFE按如圖(1)所示位置放置放置,現(xiàn)將Rt△AEF繞A點按逆時針方向旋轉(zhuǎn)角α(0°<α<90°),如圖(2),AE與BC交于點M,AC與EF交于點N,BC與EF交于點P.
(1)求證:AM=AN;
(2)當(dāng)旋轉(zhuǎn)角α=30°時,四邊形ABPF是什么樣的特殊四邊形?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年湖南省婁底市中考數(shù)學(xué)試卷(解析版) 題型:解答題

某校九年級學(xué)習(xí)小組在探究學(xué)習(xí)過程中,用兩塊完全相同的且含60°角的直角三角板ABC與AFE按如圖(1)所示位置放置放置,現(xiàn)將Rt△AEF繞A點按逆時針方向旋轉(zhuǎn)角α(0°<α<90°),如圖(2),AE與BC交于點M,AC與EF交于點N,BC與EF交于點P.
(1)求證:AM=AN;
(2)當(dāng)旋轉(zhuǎn)角α=30°時,四邊形ABPF是什么樣的特殊四邊形?并說明理由.

查看答案和解析>>

同步練習(xí)冊答案