下列結(jié)論:①4a>3a;②4+a>3+a;③4-a>3-a中,正確的是


  1. A.
    ①②
  2. B.
    ①③
  3. C.
    ②③
  4. D.
    ①②③
C
分析:①舉一個(gè)反例,例如a=0時(shí),4a=3a,故4a不一定大于3a,本選項(xiàng)錯(cuò)誤;②由4大于3,利用不等式的性質(zhì)在不等式兩邊都加上a,得到4+a>3+a,本選項(xiàng)正確;③由4大于3,利用不等式的性質(zhì)在不等式減去都加上a,得到4-a>3-a,本選項(xiàng)正確.
解答:①當(dāng)a=0時(shí),4a=3a,本選項(xiàng)錯(cuò)誤;②由4>3,利用不等式的性質(zhì)左右兩邊都加上a,得到4+a>3+a,本選項(xiàng)正確;③由4>3,利用不等式的性質(zhì)左右兩邊都減去a,得到4-a>3-a,本選項(xiàng)正確,
則正確的是②③.
故選C
點(diǎn)評(píng):此題考查了不等式的性質(zhì),熟練掌握不等式的基本性質(zhì)是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過點(diǎn)(-1,2),與y軸交于(0,2)點(diǎn),且與x軸交點(diǎn)的橫坐標(biāo)分別為x1、x2,其中-2<x1<-1,0<x2<1,下列結(jié)論:①4a-2b+c<0;②2a-b<0;③a<-1;④b2+8a>4ac.其中正確的有( 。
A、1個(gè)B、2個(gè)C、3個(gè)D、4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知二次函數(shù)y=ax2+bx+c的圖象與x軸交于點(diǎn)(-2,0)、(x1,0),且1<x1<2,與y軸的正半軸的交點(diǎn)在(0,2)的下方.下列結(jié)論:①4a-2b+c=0;②a<b<0;③2a+c>0;④2a-b+1>0.其中正確結(jié)論的個(gè)數(shù)是
 
個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過點(diǎn)(-1,2),且與x軸交點(diǎn)的橫坐標(biāo)分別為x1、x2,其中-2<x1<-1,0<x2<1,下列結(jié)論:①4a-2b+c<0;②2a-b>0;③b2+8a>4ac.其中正確的結(jié)論是
 
.(填序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過點(diǎn)(-1,2),且與x軸交點(diǎn)的橫坐標(biāo)為x1、x2,其中-2<x1<-1、0<x2<1.下列結(jié)論:①4a-2b+c<0,②2a-b<0,③a<-1,④b2+8a>4ac中,正確的結(jié)論是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)y=ax2+bx+c的圖象與x軸交于點(diǎn)(-2,0)、(x1,0),且1<x1<2,與y軸的正半軸的交點(diǎn)在(0,2)的下方.下列結(jié)論:①4a-2b+c=0;②ac<0;③4a+2b+c<0;④-2<-
b2a
<0.其中正確結(jié)論的序號(hào)是
①②③
①②③

查看答案和解析>>

同步練習(xí)冊(cè)答案