如圖,點(diǎn)E是菱形ABCD對(duì)角線(xiàn)CA的延長(zhǎng)線(xiàn)上任意一點(diǎn),以線(xiàn)段AE為邊作一個(gè)菱形AEFG,且菱形AEFG∽菱形ABCD,連接EB,GD.

(1)求證:EB=GD;

(2)若∠DAB=60°,AB=2,AG=,求GD的長(zhǎng).


              (1)證明:∵菱形AEFG∽菱形ABCD,

∴∠EAG=∠BAD,

∴∠EAG+∠GAB=∠BAD+∠GAB,

∴∠EAB=∠GAD,

∵AE=AG,AB=AD,

∴△AEB≌△AGD,

∴EB=GD;

(2)解:連接BD交AC于點(diǎn)P,則BP⊥AC,

∵∠DAB=60°,

∴∠PAB=30°,

∴BP=AB=1,

AP==,AE=AG=,

∴EP=2,

∴EB===

∴GD=


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:


從廣州到某市,可乘坐普通列車(chē)或高鐵,已知高鐵的行駛路程是400千米,普通列車(chē)的行駛路程是高鐵的行駛路程的1.3倍.

(1)求普通列車(chē)的行駛路程;

(2)若高鐵的平均速度(千米/時(shí))是普通列車(chē)平均速度(千米/時(shí))的2.5倍,且乘坐高鐵所需時(shí)間比乘坐普通列車(chē)所需時(shí)間縮短3小時(shí),求高鐵的平均速度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


若等腰三角形的兩條邊長(zhǎng)分別為7cm和14cm,則它的周長(zhǎng)為 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


如圖,在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=8,AD=3,BC=4,點(diǎn)P為AB邊上一動(dòng)點(diǎn),若△PAD與△PBC是相似三角形,則滿(mǎn)足條件的點(diǎn)P的個(gè)數(shù)是( 。

A.  1個(gè)           B.2個(gè)           C.3個(gè)           D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


如圖,已知在Rt△OAC中,O為坐標(biāo)原點(diǎn),直角頂點(diǎn)C在x軸的正半軸上,反比例函數(shù)y=(k≠0)在第一象限的圖象經(jīng)過(guò)OA的中點(diǎn)B,交AC于點(diǎn)D,連接OD.若△OCD∽△ACO,則直線(xiàn)OA的解析式為  

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


如圖,在Rt△ABC中,∠C=90°,Rt△BAP中,∠BAP=90°,已知∠CBO=∠ABP,BP交AC于點(diǎn)O,E為AC上一點(diǎn),且AE=OC.

(1)求證:AP=AO;

(2)求證:PE⊥AO;

(3)當(dāng)AE=AC,AB=10時(shí),求線(xiàn)段BO的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


如果兩個(gè)相似三角形的面積比是1:2,那么它們的周長(zhǎng)比是( 。

A.  1:2          B.1:4          C.1:        D. 2:1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


如圖.在△ABC中,BC>AC,點(diǎn)D在BC上,且DC=AC,∠ACB的平分線(xiàn)CF交AD于點(diǎn)F,點(diǎn)E是AB的中點(diǎn),連接EF.

(1)求證:EF∥BC;

(2)若四邊形BDFE的面積為6,求△ABD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


已知:如圖,四邊形ABCD為平行四邊形,以CD為直徑作⊙O,⊙O與邊BC相交于點(diǎn)F,⊙O的切線(xiàn)DE與邊AB相交于點(diǎn)E,且AE=3EB.

(1)求證:△ADE∽△CDF;

(2)當(dāng)CF:FB=1:2時(shí),求⊙O與▱ABCD的面積之比.

查看答案和解析>>

同步練習(xí)冊(cè)答案