(2012•南開區(qū)一模)如圖,AB為⊙O的直徑,點C在⊙O上,過點C作⊙O的切線交AB的延長線于點D,已知∠D=30°.
(1)求∠A的度數(shù);
(2)若點F在⊙O上,CF⊥AB,垂足為E,CF=,求圖中陰影部分的面積.
【答案】分析:(1)連接OC,則△OCD是直角三角形,可求出∠COD的度數(shù);由于∠A與∠COD是同弧所對的圓周角與圓心角.根據(jù)圓周角定理即可求得∠A的度數(shù);
(2)由圖可知:陰影部分的面積是扇形OCB和Rt△OEC的面積差;那么解決問題的關鍵是求出半徑和OE的長;在Rt△OCE中,∠OCE=∠D=30°,已知了CE的長,通過解直角三角形,即可求出OC、OE的長,由此得解.
解答:解:(1)連接OC,
∵CD切⊙O于點C
∴∠OCD=90°(1分)
∵∠D=30°
∴∠COD=60°(2分)
∵OA=OC
∴∠A=∠ACO=30°;(4分)

(2)∵CF⊥直徑AB,CF=
∴CE=(5分)
∴在Rt△OCE中,tan∠COE=,
OE===2,
∴OC=2OE=4(6分)
∴S扇形BOC=,(8分)
∴S陰影=S扇形BOC-S△EOC=.(10分)
點評:本題主要考查了切線的性質、垂徑定理以及扇形面積的計算方法.不規(guī)則圖形的面積,可以轉化為幾個規(guī)則圖形的面積的和或差來求.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2012•南開區(qū)一模)老師對甲、乙兩人的五次數(shù)學測驗成績進行統(tǒng)計,得出兩人五次測驗成績的平均分均為90分,方差分別是S2=51、S2=12,由此可知(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•南開區(qū)一模)下列命題:①對角線相等的菱形是正方形;②對角線相等且互相垂直平分的四邊形是正方形;③一組鄰邊相等且對角線相等的平行四邊形是正方形;④四邊都相等,四角都相等的四邊形是正方形.其中命題正確的有(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•南開區(qū)一模)計算
32
×
1
2
+
2
×
5
的結果估計在(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•南開區(qū)一模)在圖1中,正方形ABCD的邊長為a,等腰直角三角形FAE的斜邊AE=2b,且邊AD和AE在同一直線上.
當2b<a時,如圖1,在BA上選取點G,使BG=b,連接FG和CG,裁掉△FAG和△CGB,可以發(fā)現(xiàn):如果先將△FAG繞點F逆時針旋轉90°到△FEH的位置,那么△CGB恰可以拼接到△CHD的位置.且拼接成的新四邊形FGCH恰是正方形.
(Ⅰ)請你類比圖1的剪拼方法,在圖2(a<2b<2a)中畫出剪拼成一個新正方形的示意圖.
(Ⅱ)當b>a時,如圖3的圖形能否剪拼成一個正方形?若能,請你在圖中畫出剪拼的示意圖;若不能,簡要說明理由
能拼成,如圖所示
能拼成,如圖所示

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•南開區(qū)一模)解不等式組
x-3(x-2)≤8
5-
1
2
x>2x

查看答案和解析>>

同步練習冊答案