【題目】在平面直角坐標系中,已知拋物線.
(1)當時,
①拋物線的對稱軸為________;
②若在拋物線上有兩點,且,則的取值范圍是________;
(2)拋物線的對稱軸與軸交于點,點與點關(guān)于軸對稱,將點向右平移3個單位得到點,若拋物線與線段恰有一個公共點,結(jié)合圖象,求的取值范圍.
【答案】(1)①1;②或;(2)或.
【解析】
(1)①根據(jù)拋物線的對稱軸公式即可求得;
②根據(jù)拋物線的對稱性質(zhì),求得點的對稱點為,根據(jù)函數(shù)圖象即可求得答案;
(2)根據(jù)平移的性質(zhì),分別求得A、B的坐標,依題意,根據(jù)函數(shù)圖象,三種情況分類討論,得出相應(yīng)的a值,從而得結(jié)論.
(1)①拋物線的對稱軸為:;
②∵拋物線關(guān)于對稱,
∴點的對稱點為,
∵,
∴拋物線開口向上,
觀察圖象,或時,;
故答案為:①1;②或;
(2)∵拋物線的對稱軸為,且對稱軸與軸交于點,
∴點的坐標為,
∵點與點關(guān)于軸對稱,
∴點的坐標為,
∵點右移3個單位得到點,
∴點的坐標為,
依題意,拋物線與線段恰有一個公共點,
把點代入可得;
把點代入可得;
把點代入可得.
根據(jù)所畫圖象可知拋物線與線段恰有一個公共點時可得或.
科目:初中數(shù)學 來源: 題型:
【題目】近年來,移動支付已成為主要支付方式之一.為了解某校800名學生上個月A,B兩種移動支付方式的使用情況,從全校學生中隨機抽取了100人,發(fā)現(xiàn)樣本中A,B兩種支付方式都不使用的有5人,樣本中僅使用A和僅使用B的學生的支付金額分布情況如下:
下面有四個推斷:
①從全校學生中隨機抽取1人,該學生上個月僅使用A支付的概率為0.3;
②從全校學生中隨機抽取1人,該學生上個月A,B兩種支付方式都使用的概率為0.45;
③估計全校僅使用B支付的學生人數(shù)為200人;
④這100名學生中,上個月僅使用A和僅使用B支付的學生支付金額的中位數(shù)為800元.
其中合理推斷的序號是( )
A.①②B.①③C.①④D.②③
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,,,,以邊的中點為圓心作半圓,使與半圓相切,點分別是邊和半圓上的動點,連接,則長的最大值與最小值的和是( )
A.8B.9C.10D.12
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一艘輪船從位于燈塔C的北偏東60°方向,距離燈塔60 n mile的小島A出發(fā),沿正南方向航行一段時間后,到達位于燈塔C的南偏東45°方向上的B處,這時輪船B與小島A的距離是( )
A. n mileB.60 n mileC.120 n mileD.n mile
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某數(shù)學活動小組為測量學校旗桿AB的高度,沿旗桿正前方米處的點C出發(fā),沿斜面坡度 的斜坡CD前進4米到達點D,在點D處安置測角儀,測得旗桿頂部A的仰角為37°,量得儀器的高DE為1.5米.已知A、B、C、D、E在同一平面內(nèi),AB⊥BC,AB//DE.求旗桿AB的高度.(參考數(shù)據(jù):sin37°≈,cos37°≈,tan37°≈.計算結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某玩具商店以每件60元為成本購進一批新型玩具,以每件100元的價格銷售則每天可賣出20件,為了擴大銷售,增加盈利,盡快減少庫存,商店決定采取適當?shù)慕祪r措施,經(jīng)調(diào)查發(fā)現(xiàn):若每件玩具每降價1元,則每天可多賣2件.
(1)若商店打算每天盈利1200元,每件玩具的售價應(yīng)定為多少元?
(2)若商店為追求效益最大化,每件玩具的售價定為多少元時,商店每天盈利最多?最多盈利多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,,,將繞頂點順時針旋轉(zhuǎn),得到,點、分別與點、對應(yīng),邊分別交邊、于點、,如果點是邊的中點,那么______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角坐標系中,點,點,過點的直線垂直于線段,點是直線上在第一象限內(nèi)的一動點,過點作軸,垂足為,把沿翻折,使點落在點處,若以,,為頂點的三角形與△ABP相似,則滿足此條件的點的坐標為__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】探究問題:
⑴方法感悟:
如圖①,在正方形ABCD中,點E,F(xiàn)分別為DC,BC邊上的點,且滿足∠EAF=45°,連接EF,求證DE+BF=EF.
感悟解題方法,并完成下列填空:
將△ADE繞點A順時針旋轉(zhuǎn)90°得到△ABG,此時AB與AD重合,由旋轉(zhuǎn)可得:
AB=AD,BG=DE, ∠1=∠2,∠ABG=∠D=90°,
∴∠ABG+∠ABF=90°+90°=180°,
因此,點G,B,F(xiàn)在同一條直線上.
∵∠EAF=45°
∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°.
∵∠1=∠2,
∴∠1+∠3=45°.
即∠GAF=∠_________.
又AG=AE,AF=AF
∴△GAF≌_______.
∴_________=EF,故DE+BF=EF.
⑵方法遷移:
如圖②,將沿斜邊翻折得到△ADC,點E,F(xiàn)分別為DC,BC邊上的點,且∠EAF=∠DAB.試猜想DE,BF,EF之間有何數(shù)量關(guān)系,并證明你的猜想.
⑶問題拓展:
如圖③,在四邊形ABCD中,AB=AD,E,F(xiàn)分別為DC,BC上的點,滿足,試猜想當∠B與∠D滿足什么關(guān)系時,可使得DE+BF=EF.請直接寫出你的猜想(不必說明理由)
.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com