如圖,在邊長為1的小正方形組成的網(wǎng)格中,△ABC的三個頂點均在格點上,請按要求完成下列各題:
(1)用簽字筆畫AD∥BC(D為格點),連接CD;
(2)線段CD的長為______;
(3)請你在△ACD的三個內(nèi)角中任選一個銳角,若你所選的銳角是______,則它所對應的正弦函數(shù)值是______;
(4)若E為BC中點,則tan∠CAE的值是______.

【答案】分析:觀察此圖我們會發(fā)現(xiàn),AD、AC、CD、AB等等許多直線都在直角三角形中,這樣用勾股定理就可求出它們的值.
解答:解:(1)如圖.

(2)∵線段CD正好和格線組成一個直角三角形,
∴用勾股定理可知:CD==

(3)∠CAD,由網(wǎng)格組成的直角三角形我們可知:AD=5,AC=2,由勾股定理知此圖正好是一個直角三角形,
∴sin∠CAD==(或∠ADC,).

(4)由圖可知tan∠CAE==
點評:此題的關鍵是利用網(wǎng)格和勾股定理求出各邊的長,學生平時做題要養(yǎng)成仔細觀察的習慣.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2013•重慶)如圖,在邊長為1的小正方形組成的10×10網(wǎng)格中(我們把組成網(wǎng)格的小正方形的頂點稱為格點),四邊形ABCD在直線l的左側(cè),其四個頂點A、B、C、D分別在網(wǎng)格的格點上.
(1)請你在所給的網(wǎng)格中畫出四邊形A′B′C′D′,使四邊形A′B′C′D′和四邊形ABCD關于直線l對稱,其中點A′、B′、C′、D′分別是點A、B、C、D的對稱點;
(2)在(1)的條件下,結(jié)合你所畫的圖形,直接寫出線段A′B′的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•潮陽區(qū)模擬)如圖,在邊長為1的小正方形組成的網(wǎng)格中,兩個直角三角形頂點均在格點上,以圖中的點O為位似中心在網(wǎng)格圖中作位似變換,分別將兩個直角三角形縮小為原來的一半,(要求縮小的圖形與原圖形在點O兩側(cè))

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•泰寧縣質(zhì)檢)如圖,在邊長為1的小正方形組成的網(wǎng)格中,△ABC的三個頂點均在格點上,請按要求完成下列各題:
(1)用簽字筆畫AD∥BC(D為格點),連接CD.
(2)線段AB的長為
5
5
,△ABC的面積為
6
6

(3)若E為BC中點,則tan∠CAE的值是
1
2
1
2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•菏澤)如圖,在邊長為1的小正方形組成的網(wǎng)格中,△ABC和△DEF的頂點都在格點上,P1,P2,P3,P4,P5是△DEF邊上的5個格點,請按要求完成下列各題:
(1)試證明三角形△ABC為直角三角形;
(2)判斷△ABC和△DEF是否相似,并說明理由;
(3)畫一個三角形,使它的三個頂點為P1,P2,P3,P4,P5中的3個格點并且與△ABC相似(要求:不寫作法與證明).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在邊長為1的小正方形組成的網(wǎng)格中,△AOB的三個頂點均在格點上,點A、B的坐標分別為(3,2)、(1,3).△AOB繞點O逆時針旋轉(zhuǎn)90°后得到△A1OB1
(1)在網(wǎng)格中畫出△A1OB1,并標上字母;
(2)點A關于O點中心對稱的點的坐標為
(-3,-2)
(-3,-2)
;
(3)點A1的坐標為
(-2,3)
(-2,3)
;
(4)在旋轉(zhuǎn)過程中,點B經(jīng)過的路徑為弧BB1,那么弧BB1的長為
10
2
π
10
2
π

查看答案和解析>>

同步練習冊答案