【題目】對(duì)一個(gè)矩形ABCD給出如下定義:在同一平面內(nèi),如果上存在一點(diǎn),使得這點(diǎn)到矩形ABCD的四個(gè)頂點(diǎn)的距離相等,那么稱(chēng)矩形ABCD的“隨從矩形”如圖,在平面直角坐標(biāo)系xOy中,直線lx軸于點(diǎn)M,的半徑為4,矩形ABCD沿直線運(yùn)動(dòng)在直線l,軸,當(dāng)矩形ABCD的“隨從矩形”時(shí),點(diǎn)A的坐標(biāo)為______

【答案】)或(

【解析】

設(shè)直線lE、根據(jù)的“隨從矩形”的定義可知,當(dāng)矩形ABCD的對(duì)角線的交點(diǎn)KEF重合時(shí),四邊形ABCD的“隨從矩形”,利用平移的性質(zhì)解決問(wèn)題即可;

設(shè)直線ly軸于N,則,

,

,

設(shè)直線lE、軸于G

,

,,

,同法可得

連接ACBDK,易證是邊長(zhǎng)為2的等邊三角形,易知點(diǎn)K向上平移個(gè)單位,再向右平移1個(gè)單位得到點(diǎn)A

根據(jù)的“隨從矩形”的定義可知,當(dāng)矩形ABCD的對(duì)角線的交點(diǎn)KEF重合時(shí),四邊形ABCD的“隨從矩形”,

,,

時(shí),四邊形ABCD的“隨從矩形”.

故答案為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明騎單車(chē)上學(xué),當(dāng)他騎了一段路時(shí),想起要買(mǎi)某本書(shū),于是又折回到剛經(jīng)過(guò)的某書(shū)店,買(mǎi)到書(shū)后繼續(xù)去學(xué)校.以下是他本次上學(xué)所用的時(shí)間與路程的關(guān)系示意圖.

根據(jù)圖中提供的信息回答下列問(wèn)題:

(1)小明家到學(xué)校的路程是多少米?

(2)在整個(gè)上學(xué)的途中哪個(gè)時(shí)間段小明騎車(chē)速度最快,最快的速度是多少米/分?

(3)小明在書(shū)店停留了多少分鐘?

(4)本次上學(xué)途中,小明一共行駛了多少米?一共用了多少分鐘?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】四邊形ABCD是一個(gè)長(zhǎng)方形,將AD沿某一直線AFF為折痕與CD邊的交點(diǎn))折疊,使點(diǎn)D落在BC邊上的某一點(diǎn)E處,請(qǐng)用沒(méi)有刻度的直尺與圓規(guī)找出點(diǎn)E與折痕AF,并在折痕AF上找一點(diǎn)P滿足BPEP最。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】綜合探究

問(wèn)題情境:

我們?cè)诘谑徽隆度切巍分袑W(xué)習(xí)了三角形的邊與角的性質(zhì),在第十二章《全等三角形》中學(xué)習(xí)了全等三角形的性質(zhì)和判定.在一些探究題中經(jīng)常用以上知識(shí)轉(zhuǎn)化角和邊,進(jìn)而解決問(wèn)題.

問(wèn)題初探:

如圖1,在ABC中,∠ACB=90°,AC=BC,點(diǎn)D為直線AB上的一個(gè)動(dòng)點(diǎn)(DA,B不重合),連接CD,以CD為直角邊作等腰直角三角形CDE,連接BE.

1)當(dāng)點(diǎn)D在線段AB上時(shí),ADBE的數(shù)量關(guān)系是 ;位置關(guān)系是 ;AB,BDBE三條線段之間的關(guān)系是 .

類(lèi)比再探:

2)如圖2,當(dāng)點(diǎn)D運(yùn)動(dòng)到AB的延長(zhǎng)線上時(shí),ADBE還存在(1)中的位置關(guān)系嗎?若存在,請(qǐng)說(shuō)明理由.同時(shí)探索AB,BDBE三條線段之間的數(shù)量關(guān)系,并說(shuō)明理由.

能力提升:

3)如圖3,當(dāng)點(diǎn)D運(yùn)動(dòng)到BA的延長(zhǎng)線上時(shí),若AB=7,AD=2,則AE= .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】問(wèn)題發(fā)現(xiàn)

在等腰三角形ABC中,,分別以ABAC為斜邊,向的外側(cè)作等腰直角三角形,如圖1所示,其中于點(diǎn)F,于點(diǎn)GMBC的中點(diǎn),連接MDME

填空:線段AFAG,AB之間的數(shù)量關(guān)系是______;

線段MDME之間的數(shù)量關(guān)系是______

拓展探究

在任意三角形ABC中,分別以ABAC為斜邊向的外側(cè)作等腰直角三角形,如圖2所示,MBC的中點(diǎn),連接MDME,則MDME具有怎樣的數(shù)量關(guān)系和位置關(guān)系?并說(shuō)明理由;

解決問(wèn)題

在任意三角形ABC中,分別以ABAC為斜邊,向的內(nèi)側(cè)作等腰直角三角形,如圖3所示,MBC的中點(diǎn),連接MDME,若,請(qǐng)直接寫(xiě)出線段DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平面直角坐標(biāo)系,,

1)作出關(guān)于直線對(duì)稱(chēng)的圖形并寫(xiě)出各頂點(diǎn)的坐標(biāo);

2)將向左平移2個(gè)單位,作出平移后的,并寫(xiě)出各頂點(diǎn)的坐標(biāo);

3)觀察,它們是否關(guān)于某直線對(duì)稱(chēng)?若是,請(qǐng)指出對(duì)稱(chēng)軸,并求的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)P是∠AOB內(nèi)任意一點(diǎn),OP=6cm,點(diǎn)M和點(diǎn)N分別是射線OA和射線OB上的動(dòng)點(diǎn),PMN周長(zhǎng)的最小值是6cm,則∠AOB的度數(shù)是( )

A.25°B.30°

C.60°D.45°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】觀察下表中的每一組值:

名稱(chēng)組別

名稱(chēng)組別

1

3

5

2

5

3

7

4

8

1)根據(jù)表中前四組、、值的變化規(guī)律,第5組中 ; ;第組中 ; ; .

2)試證明以表中每組、為邊的三角形都是直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】作圖題:

1)為進(jìn)一步打造宜居北京,某區(qū)擬在新竣工的矩形廣場(chǎng)的內(nèi)部修建一個(gè)音樂(lè)噴泉,要求音樂(lè)噴泉 到廣場(chǎng)的兩個(gè)入口 , 的距離相等,且到廣場(chǎng)管理處 的距離等于 之間距離的一半,,, 的位置如圖所示.請(qǐng)?jiān)诖痤}卷的原圖上利用尺規(guī)作圖作出音樂(lè)噴泉 的位置.(要求:不寫(xiě)已知、求作、作法和結(jié)論,保留作圖痕跡,必須用鉛筆作圖)

2)如圖,兩條公路 相交于 點(diǎn),在 的內(nèi)部有工廠 ,現(xiàn)要修建一個(gè)貨站 ,使貨站 到兩條公路 , 的距離相等,且到兩工廠 , 的距離相等,用尺規(guī)作出貨站 的位置.(要求:不寫(xiě)作法,保留作圖痕跡,必須用鉛筆作圖)

查看答案和解析>>

同步練習(xí)冊(cè)答案