(利用
a2
=|a|
解決本題)已知△ABC的三邊分別為a、b、c,化簡:
(a+b+c)2
+
(a-b-c)2
+
(b-c-a)2
-
(c-a-b)2
分析:根據(jù)兩邊之和大于第三邊可將各二次根式求出,從而可得出化簡后的答案.
解答:解:由三邊關(guān)系得:a+b+c>0,a-b-c<0,b-c-a<0,c-a-b<0,
∴原式=a+b+c+b+c-a+a+c-b+a+b-c=2a+2b+2c.
點(diǎn)評:本題考查二次根式的化簡及三角形的三邊關(guān)系,掌握三角形兩邊之和大于第三邊是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

28、問題1:同學(xué)們已經(jīng)體會到靈活運(yùn)用乘法公式給整式乘法及多項式的因式分解帶來的方便,快捷.相信通過下面材料的學(xué)習(xí)探究,會使你大開眼界并獲得成功的喜悅.
例:用簡便方法計算195×205.
解:195×205
=(200-5)(200+5)           ①
=2002-52                   ②
=39975
(1)例題求解過程中,第②步變形是利用
平方差公式
(填乘法公式的名稱).
(2)用簡便方法計算:9×11×101×10001(4分)
問題2:對于形如x2+2xa+a2這樣的二次三項式,可以用公式法將它分解成(x+a)2的形式.但對于二次三項式x2+2xa-3a2,就不能直接運(yùn)用公式了.
此時,我們可以在二次三項式x2+2xa-3a2中先加上一項a2,使它與x2+2xa的和成為一個完全平方式,再減去a2,整個式子的值不變,于是有:x2+2xa-3a2=(x2+2ax+a2)-a2-3a2=(x+a)2-4a2=(x+a)2-(2a)2=(x+3a)(x-a)
像這樣,先添一適當(dāng)項,使式中出現(xiàn)完全平方式,再減去這個項,使整個式子的值不變的方法稱為“配方法”.
利用“配方法”分解因式:a2-6a+8.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知在Rt△ABC中,∠C=90°,它的三邊長分別為a,b,c,對于同一個銳精英家教網(wǎng)角A的正弦,余弦存在關(guān)系式sin2A+cos2A=1試說明.
解:∵sinA=
 
,cosA=
 

∴sin2A+cos2A=
 
,
∵a2+b2=c2,∴sin2A+cos2A=1.
(1)在橫線上填上適當(dāng)內(nèi)容;
(2)若∠α為銳角,利用(1)的關(guān)系式解決下列問題.
①若sinα=
4
5
,求cosα的值;cosα=
3
5

②若sinα+cosα=1.1,求sinαcosα的值.sinαcosα=0.105.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀下列材料并解答后面的問題:利用完全平方公式(a±b)2=a2±2ab+b2,通過配方可對a2+b2進(jìn)行適當(dāng)?shù)淖冃,如a2+b2=(a+b)2-2ab或a2+b2=(a-b)2+2ab.從而使某些問題得到解決.例:已知a+b=5,ab=3,求a2+b2的值.
解:a2+b2=(a+b)2-2ab=52-2×3=19.
問題:(1)已知a+
1
a
=6,則a2+
1
a2
=
 
;
(2)已知a-b=2,ab=3,求a4+b4的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀并解答下列問題:我們熟悉兩個乘法公式:①(a+b)2=a2+2ab+b2;②(a-b)2=a2-2ab+b2.現(xiàn)將這兩個公式變形,可得到一個新的公式③:ab=(
a+b
2
2-(
a-b
2
2,這個公式形似平方差公式,我們不妨稱之為廣義的平立差公式.靈活、恰當(dāng)?shù)剡\(yùn)用公式③將會使一些數(shù)學(xué)問題迎刃而解.
例如:因式分解:(ab-1)2+(a+b-2)( a+b-2ab)
解:原式=(ab-1)2+[
(a+b-2)-(a+b-2ab)
2
]2
-[
(a+b-2)-(a+b-2ab)
2
]2

=(ab-1)2+(a+b-ab-1)2-(ab-1)2=(a-1)(b-1)2=(a-1)2(b-1)2
你能利用公式(或其他方法)解決下列問題嗎?
已知各實數(shù)a,b,c滿足ab=c2+9且a=6-b,求證:a=b.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

式子
a2+b2
可以理解為“以a、b為直角邊長的直角三角形的斜邊長”,利用這個知識,我們可以恰當(dāng)?shù)貥?gòu)造圖形來解決一些數(shù)學(xué)問題.比如在解“已知a+b=2,則
a2+1
+
b2+4
的最小值為
13
13
”時,我們就可以構(gòu)造兩個直角三角形,轉(zhuǎn)化為“求兩個直角三角形的斜邊和最小是多少”的問題.請你根據(jù)所給圖形和題意,在橫線上填上正確的答案.

查看答案和解析>>

同步練習(xí)冊答案