如圖,已知二次函數(shù)的圖象是經(jīng)過(guò)A(1,0),B(3,0),E(0,6)三點(diǎn)的一條拋
物線.
(1)求該二次函數(shù)的解析式.
(2)設(shè)該拋物線的頂點(diǎn)為C,對(duì)稱軸交x軸于點(diǎn)D,在y軸上是否存在這樣的點(diǎn)P,使以點(diǎn)A、0、P為頂點(diǎn)的三角形與△ACD相似但不全等?若存在,請(qǐng)寫(xiě)出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(3)設(shè)Q為直線CD上一動(dòng)點(diǎn),S點(diǎn)的坐標(biāo)為(-1,0),ST為以Q為圓心,QA為半徑的⊙Q的切線,T為切點(diǎn),試問(wèn):當(dāng)點(diǎn)Q在直線CD上移動(dòng)時(shí),切線ST的長(zhǎng)是否發(fā)生變化?試證明你的結(jié)論.

(1)解:由題意可設(shè)二次函數(shù)的解析式為:y=a(x-1)(x-3),
又拋物線過(guò)點(diǎn)E(0,6)
∴6=a×(-1)×(-3)
解得:a=2,
故所求二次函數(shù)的解析式為:y=2(x-1)(x-3)=2x2-8x+6;

(2)解:由y=2x2-8x+6=2(x-2)2-2,
可知頂點(diǎn)C的坐標(biāo)為(2,-2),
點(diǎn)D的坐標(biāo)為(2,0),
CD=2,AD=1 則=2,
設(shè)在y軸上存在點(diǎn)P(0,y),
若△OAP與△ACD相似且不全等,
==2或==,
當(dāng)OP=2OA時(shí),△OAP≌△DAC,不合題意,
當(dāng)OP=OA時(shí),即OP=時(shí),△OAP與△DCA相似,
OP=|y|,
∴|y|=,
解得:y=±,
∴符合條件的點(diǎn)有兩個(gè):P1(0,),P2(0,-);

(3)當(dāng)點(diǎn)Q在直線CD上移動(dòng)時(shí),切線ST的長(zhǎng)不發(fā)生變化;
理由:連接QS,QT.
∵拋物線的對(duì)稱軸CD為直線x=2,
點(diǎn)Q為直線x=2上的動(dòng)點(diǎn),設(shè)點(diǎn)Q的坐標(biāo)為(2,q)
∴QA==
QS==,
T為直線ST與⊙Q的切點(diǎn),∴QT=QA=,
Rt△STQ中,ST2=SQ2-TQ2=(9+q2)-(1+q2)=8,
∴ST==2(常數(shù))
∴點(diǎn)Q在直線CD上移動(dòng)時(shí),切線ST的長(zhǎng)為常數(shù)2
分析:(1)利用交點(diǎn)式將A(1,0),B(3,0),E(0,6)代入求出二次函數(shù)解析式即可;
(2)根據(jù)(1)中所求得出二次函數(shù)的頂點(diǎn)坐標(biāo),進(jìn)而得出△OAP與△ACD相似且不全等時(shí),則==2或==,求出P點(diǎn)坐標(biāo)即可;
(3)首先得出點(diǎn)Q為直線x=2上的動(dòng)點(diǎn),設(shè)點(diǎn)Q的坐標(biāo)為(2,q),則QA==,QS==,得出ST的值即可.
點(diǎn)評(píng):此題主要考查了待定系數(shù)法求二次函數(shù)解析式以及相似三角形的判定與性質(zhì)和勾股定理等知識(shí),注意分類討論得出不要漏解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知二次函數(shù)的圖象經(jīng)過(guò)點(diǎn)A(3,3)、B(4,0)和原點(diǎn)O.P為二次函數(shù)圖象上精英家教網(wǎng)的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作x軸的垂線,垂足為D(m,0),并與直線OA交于點(diǎn)C.
(1)求出二次函數(shù)的解析式;
(2)當(dāng)點(diǎn)P在直線OA的上方時(shí),求線段PC的最大值;
(3)當(dāng)m>0時(shí),探索是否存在點(diǎn)P,使得△PCO為等腰三角形,如果存在,求出P的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•呼和浩特)如圖,已知二次函數(shù)的圖象經(jīng)過(guò)點(diǎn)A(6,0)、B(-2,0)和點(diǎn)C(0,-8).
(1)求該二次函數(shù)的解析式;
(2)設(shè)該二次函數(shù)圖象的頂點(diǎn)為M,若點(diǎn)K為x軸上的動(dòng)點(diǎn),當(dāng)△KCM的周長(zhǎng)最小時(shí),點(diǎn)K的坐標(biāo)為
6
7
,0)
6
7
,0)

(3)連接AC,有兩動(dòng)點(diǎn)P、Q同時(shí)從點(diǎn)O出發(fā),其中點(diǎn)P以每秒3個(gè)單位長(zhǎng)度的速度沿折線OAC按O→A→C的路線運(yùn)動(dòng),點(diǎn)Q以每秒8個(gè)單位長(zhǎng)度的速度沿折線OCA按O→C→A的路線運(yùn)動(dòng),當(dāng)P、Q兩點(diǎn)相遇時(shí),它們都停止運(yùn)動(dòng),設(shè)P、Q同時(shí)從點(diǎn)O出發(fā)t秒時(shí),△OPQ的面積為S.
①請(qǐng)問(wèn)P、Q兩點(diǎn)在運(yùn)動(dòng)過(guò)程中,是否存在PQ∥OC?若存在,請(qǐng)求出此時(shí)t的值;若不存在,請(qǐng)說(shuō)明理由;
②請(qǐng)求出S關(guān)于t的函數(shù)關(guān)系式,并寫(xiě)出自變量t的取值范圍;
③設(shè)S0是②中函數(shù)S的最大值,直接寫(xiě)出S0的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•常德)如圖,已知二次函數(shù)的圖象過(guò)點(diǎn)A(0,-3),B(
3
,
3
),對(duì)稱軸為直線x=-
1
2
,點(diǎn)P是拋物線上的一動(dòng)點(diǎn),過(guò)點(diǎn)P分別作PM⊥x軸于點(diǎn)M,PN⊥y軸于點(diǎn)N,在四邊形PMON上分別截取PC=
1
3
MP,MD=
1
3
OM,OE=
1
3
ON,NF=
1
3
NP.
(1)求此二次函數(shù)的解析式;
(2)求證:以C、D、E、F為頂點(diǎn)的四邊形CDEF是平行四邊形;
(3)在拋物線上是否存在這樣的點(diǎn)P,使四邊形CDEF為矩形?若存在,請(qǐng)求出所有符合條件的P點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知二次函數(shù)的圖象與x軸交于A(2,0)、B(6,0)兩點(diǎn),與y軸交于點(diǎn)D(0,4).
(1)求該二次函數(shù)的表達(dá)式;
(2)寫(xiě)出該拋物線的頂點(diǎn)C的坐標(biāo);
(3)求四邊形ACBD的面積?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知二次函數(shù)的圖象(0≤x≤3.4),關(guān)于該函數(shù)在所給自變量的取值范圍內(nèi),下列說(shuō)法正確的是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案