【題目】如圖,在正方形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,E、F分別在OD、OC上,且DE=CF,連接DF、AE,AE的延長(zhǎng)線交DF于點(diǎn)M.
(1)求證:AE=DF;
(2)求證:AM⊥DF.
【答案】(1)證明見(jiàn)解析;(2)證明見(jiàn)解析
【解析】
(1)根據(jù)正方形的性質(zhì)證明△AOE≌△DOF即可;
(2)由(1)知∠OEA=∠OFD,根據(jù)∠OAE+∠AEO=90°,等量代換即可得證.
證明:(1)∵四邊形ABCD是正方形,
∴OA=CO=OD,AC⊥BD,
∴∠AOE=∠DOF=90°,
又∵DE=CF,
∴OD﹣DE=OC﹣CF,即OE=OF,
在△AOE和△DOF中,,
∴△AOE≌△DOF(SAS),
∴AE=DF;
(2)由(1)得:△AOE≌△DOF,
∴∠OEA=∠OFD,
∵∠OAE+∠AEO=90°,
∴∠OAE+∠OFD=90°,
∴∠AMF=90°,
∴AM⊥DF.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)是軸非負(fù)半軸上的動(dòng)點(diǎn),點(diǎn)坐標(biāo)為,是線段的中點(diǎn),將點(diǎn)繞點(diǎn)順時(shí)針?lè)较蛐D(zhuǎn)90°得到點(diǎn),過(guò)點(diǎn)作軸的垂線,垂足為,過(guò)點(diǎn)作軸的垂線與直線相交于點(diǎn),連接,,設(shè)點(diǎn)的橫坐標(biāo)為.
(1)當(dāng)時(shí),求點(diǎn)的坐標(biāo);
(2)設(shè)的面積為,當(dāng)點(diǎn)在線段上時(shí),求與之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
(3)當(dāng)為何值時(shí),取得最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=x+4的圖象與反比例函數(shù)y=(k為常數(shù)且k≠0)的圖象交于A(﹣1,a),B兩點(diǎn),與x軸交于點(diǎn)C.
(1)求a,k的值及點(diǎn)B的坐標(biāo);
(2)若點(diǎn)P在x軸上,且S△ACP=S△BOC,直接寫出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,廣安市防洪指揮部發(fā)現(xiàn)渠江邊一處長(zhǎng)400米,高8米,背水坡的坡角為45°的防洪大堤(橫截面為梯形ABCD)急需加固.經(jīng)調(diào)查論證,防洪指揮部專家組制定的加固方案是:背水坡面用土石進(jìn)行加固,并使上底加寬2米,加固后,背水坡EF的坡比i=1:2.
(1)求加固后壩底增加的寬度AF的長(zhǎng);
(2)求完成這項(xiàng)工程需要土石多少立方米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角標(biāo)系中,已知△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(﹣1,2),B(﹣3,4),C(﹣1,6).
(1)畫出△ABC,并求出BC所在直線的解析式;
(2)畫出△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°后得到的△AB1C1,并求出△ABC在上述旋轉(zhuǎn)過(guò)程中掃過(guò)的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市將舉辦“時(shí)代新人說(shuō)”第三季,幸福園小區(qū)居委會(huì)為了解居民獲取“時(shí)代新人說(shuō)”活動(dòng)相關(guān)信息的方式進(jìn)行了隨機(jī)抽樣調(diào)查,調(diào)查設(shè)置了A(網(wǎng)絡(luò)),B(電視),C(報(bào)紙),D(其他)四種方式,被調(diào)查的居民只能從中選取一種方式,并根據(jù)收集到的數(shù)據(jù)繪制了如下的兩幅均不完整的統(tǒng)計(jì)圖:
根據(jù)圖中信息,解答下列問(wèn)題.
補(bǔ)全上面的條形統(tǒng)計(jì)圖.
在扇形統(tǒng)計(jì)圖中,選擇種方式的人數(shù)所占的百分比是 ,選擇種方式的人數(shù)所在扇形圓心角的度數(shù)是 .
該小區(qū)有男女報(bào)名了社區(qū)的“時(shí)代新人說(shuō)”活動(dòng),由于人數(shù)限制,居委會(huì)只能從中隨機(jī)抽取名參加活動(dòng),請(qǐng)你用畫樹狀圖或列表的方法求出恰好抽到男女的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠AOB=90°,∠B=30°,以點(diǎn)O為圓心,OA為半徑作弧交AB于點(diǎn)A、點(diǎn)C,交OB于點(diǎn)D,若OA=3,則陰影都分的面積為___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,AB=10cm,E為對(duì)角線BD上一動(dòng)點(diǎn),連接AE,CE,過(guò)E點(diǎn)作EF⊥AE,交直線BC于點(diǎn)F.E點(diǎn)從B點(diǎn)出發(fā),沿著BD方向以每秒2cm的速度運(yùn)動(dòng),當(dāng)點(diǎn)E與點(diǎn)D重合時(shí),運(yùn)動(dòng)停止.設(shè)△BEF的面積為ycm2,E點(diǎn)的運(yùn)動(dòng)時(shí)間為x秒.
(1)求證:CE=EF;
(2)求y與x之間關(guān)系的函數(shù)表達(dá)式,并寫出自變量x的取值范圍;
(3)求△BEF面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲乙兩人同時(shí)登山,甲乙兩人距地面的高度y(米)與登山時(shí)間x(分)之間的函數(shù)圖象如圖所示,根據(jù)圖象所提供的信息解答下列問(wèn)題:
(1)甲登山的速度是 米/分鐘,乙在A地提速時(shí)距地面的高度b為 米.
(2)若乙提速后,乙的速度是甲登山速度的3倍,請(qǐng)求出乙提速后y和x之間的函數(shù)關(guān)系式.
(3)登山多長(zhǎng)時(shí)間時(shí),乙追上了甲,此時(shí)乙距A地的高度為多少米?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com