【題目】某中學(xué)校團委開展“關(guān)愛殘疾兒童”愛心捐書活動,全校師生踴躍捐贈各類書籍共6000本.為了解各類書籍的分布情況,從中隨機抽取了部分書籍分四類進行統(tǒng)計:A.藝術(shù)類;B.文學(xué)類;C.科普類;D.其他,并將統(tǒng)計結(jié)果繪制成如圖所示的兩幅不完整的統(tǒng)計圖.
(1)這次統(tǒng)計共抽取了200____本書籍,扇形統(tǒng)計圖中的m=40____,∠α的度數(shù)是___;
(2)請將條形統(tǒng)計圖補充完整;
(3)估計全校師生共捐贈了多少本文學(xué)類書籍.
【答案】(1)200、40、36°;(2)見解析;(3)1800本.
【解析】
(1)由A類別數(shù)量除以其所占百分比可得總數(shù)量,用C類別數(shù)量除以總數(shù)量可得m的值,再用360°乘以D類別數(shù)量所占比例即可得;
(2)根據(jù)各類別數(shù)量之和等于總數(shù)量求得B的數(shù)量,據(jù)此可補全圖形;
(3)用總數(shù)量乘以樣本中B類別人數(shù)所占比例.
(1)本次統(tǒng)計共抽取書籍40÷20%=200本,
扇形統(tǒng)計圖中m%=×100%=40%,即m=40;
∠α=360°×=36°,
故答案為:200、40、36°;
(2)B類別人數(shù)為200-(40+80+20)=60,
補全圖形如下:
(3)估計全校師生共捐贈書籍6000×=1800本.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若(x2+px﹣)(x2﹣3x+q)的積中不含x項與x3項
(1)求p、q的值;
(2)求代數(shù)式(﹣2p2q)2+(3pq)0+p2019q2020的值
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校的某社團組織了一次智力競賽,共a、b、c三題,每題或者得滿分或者得0分,其中題a滿分10分,題b、題c滿分均為15分.競賽結(jié)果,每個學(xué)生至少答對了一題,三題全答對的有2人,答對其中兩道題的有14人,答對題a的人數(shù)與答對題b的人數(shù)之和為29,答對題a的人數(shù)與答對題c的人數(shù)之和為27,答對題b的人數(shù)與答對題c的人數(shù)之和為20,則這個社團的平均成績是_____分.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算:
(1)
(2)
(3)(x2 y xy) 3(x2 y xy) 4x2 y
(4)已知:A 2a2 5ab 3b2 , B 3a2 ab 2b2 ,求(2A B) (3A 2B)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】以下判斷正確的是( ).
A.三角形的一個外角等于兩個內(nèi)角的和B.三角形的外角大于任何一個內(nèi)角
C.一個三角形中,至少有一個角大于或等于60°D.三角形的外角是內(nèi)角的鄰補角
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一副撲克牌中,拿出紅桃2、紅桃3、紅桃4、紅桃5四張牌,洗勻后,小明從中隨機摸出一張,記下牌面上的數(shù)字為x,然后放回并洗勻,再由小華隨機摸出一張,記下牌面上的數(shù)字為y,組成一對數(shù)(x,y).
(1)用列表法或樹形圖表示出(x,y)的所有可能出現(xiàn)的結(jié)果;
(2)求小明、小華各摸一次撲克牌所確定的一對數(shù)是方程x+y=5的解的概率;
(3)小明、小華玩游戲,規(guī)則如下:組成數(shù)對和為偶數(shù)小明贏,組成數(shù)對和為奇數(shù)小華贏.你認(rèn)為這個游戲公平嗎?若不公平,請重新設(shè)計一個對小明、小華都公平的游戲.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某園林部門決定利用現(xiàn)有的349盆甲種花卉和295盆乙種花卉搭配A. B兩種園藝造型共50個,擺放在迎賓大道兩側(cè)。已知搭配一個A種造型需甲種花卉8盆,乙種花卉4盆;搭配一個B種造型需甲種花卉5盆,乙種花卉9盆。
(1)某校九年級某班課外活動小組承接了這個園藝造型搭配方案的設(shè)計,問符合題意的搭配方案有幾種?請你幫助設(shè)計出來;
(2)若搭配一個A種造型的成本是200元,搭配一個B種造型的成本是360元,試說明(1)中哪種方案成本最低,最低成本是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)定義:直角三角形兩直角邊的平方和等于斜邊的平方。如:直角三角形的直角邊分別為3、4,則斜邊的平方=32+42=25.已知:Rt△ABC中,∠C=90°,AC=8,AB=10,直接寫出BC2=___.
(2)應(yīng)用:已知正方形ABCD的邊長為4,點P為AD邊上的一點,AP=AD,請利用“兩點之間線段最短”這一原理,在線段AC上畫出一點M,使MP+MD最小,并直接寫出最小值的平方為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊三角形ABC中,P為BC上一點,D為AC上一點,且∠APD=60°,BP=1,CD=,則△ABC的邊長為____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com