(2013•長寧區(qū)一模)如圖,在正方形網(wǎng)格中,每一個(gè)小正方形的邊長都是1,已知向量
a
b
的起點(diǎn)、終點(diǎn)都是小正方形的頂點(diǎn).請(qǐng)完成下列問題:
(1)設(shè)
m
=3(
a
-
1
3
b
)-4(
1
2
a
-
1
4
b
)
n
=5(
a
+
2
5
b
)-3(6
a
+
2
3
b
)
.判斷向量
m
、
n
是否平行,說明理由;
(2)在正方形網(wǎng)格中畫出向量:4
b
-
3
2
a
,并寫出4
b
-
3
2
a
的模.(不需寫出做法,只要寫出哪個(gè)向量是所求向量).
分析:(1)先將向量
m
、
n
化簡,然后根據(jù)向量平行的定義即可作出判斷;
(2)分別畫出4
b
及-
3
2
a
,然后可得出4
b
-
3
2
a
,繼而在格點(diǎn)三角形中可求出4
b
-
3
2
a
的模.
解答:解:(1)
m
=
a
,
n
=-13
a

n
=-13
m
,
故可得向量
m
n
平行.
(2)所畫圖形如下:

則 |4
b
-
3
2
a
|=5
點(diǎn)評(píng):本題考查了向量的知識(shí),注意掌握向量平行的判斷方法及向量摸的定義.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•長寧區(qū)一模)已知,二次函數(shù)f(x)=ax2+bx+c的部分對(duì)應(yīng)值如下表,則f(-3)=
12
12

x -2 -1 0 1 2 3 4 5
y 5 0 -3 -4 -3 0 5 12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•長寧區(qū)一模)計(jì)算:
tan45°
2
+sin45°-
3
•tan30°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•長寧區(qū)一模)已知△ABC中,∠C=90°,則cosA等于( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•長寧區(qū)一模)如圖,圓O的弦AB垂直平分半徑OC,則四邊形OACB一定是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•長寧區(qū)一模)已知實(shí)數(shù)x、y滿足
x
y
=
3
2
,則
2x+y
2y
=
2
2

查看答案和解析>>

同步練習(xí)冊(cè)答案