如圖,在平面直角坐標(biāo)系中,△ABC的頂點(diǎn)A在原點(diǎn),邊AC在x軸的正半軸,AC=16,∠BAC=60°,AB=10,⊙P分別與邊AB、AC相切于D、E(切點(diǎn)D、E不在邊AB、AC的端點(diǎn)),ED的延長(zhǎng)線與CB的延長(zhǎng)線相交于點(diǎn)F.
(1)求BC邊的長(zhǎng)和△ABC的面積;
(2)設(shè)AE=x,DF=y,寫(xiě)出y與x的函數(shù)解析式,并寫(xiě)出自變量x的取值范圍;
(3)探索△ADC與△DBF能否相似?若能相似,請(qǐng)求出x的值,同時(shí)判斷此時(shí)⊙P與邊BC的位置關(guān)系,并證明之;若不能相似,請(qǐng)說(shuō)明理由;
(4)當(dāng)⊙P與△ABC內(nèi)切時(shí),⊙P與邊BC相切于G點(diǎn),請(qǐng)寫(xiě)出切點(diǎn)D、E、G的坐標(biāo)(不必寫(xiě)出計(jì)算過(guò)程).

【答案】分析:(1)過(guò)B作BG⊥x軸,垂足為G,解Rt△ABG,得BG,AG,再求CG,在Rt△CBG中,運(yùn)用勾股定理求BC;
(2)由∠BAC=60°,AD,AE為圓的切線可知,△ADE為等邊三角形,可設(shè)AE=AD=DE=x,DB=10-x,CE=16-x,過(guò)E作EH∥AB交BC于H,在△ABC中,由EH∥AB,利用相似比求EH,在△FEH中,由EH∥DB,利用相似比求x、y的關(guān)系;
(3)過(guò)P作PQ⊥BC,垂足為Q,連接PA、PB、PC,先假如△ADC與△DBF相似,利用相似比求x的值,再求圓的半徑;
(4)當(dāng)⊙P與△ABC內(nèi)切時(shí),連接AP,由內(nèi)切圓半徑r=求r,在Rt△APE中,解直角三角形求AE,由△ADE為等邊三角形,可求D點(diǎn)坐標(biāo),由CG=CE,利用相似比求G點(diǎn)坐標(biāo).
解答:解:(1)過(guò)B作BG⊥x軸,垂足為G,
在Rt△ABG中∠BAC=60°,AB=10,得到AG=5,
由勾股定理可得BG=5,由于AC=16,可得GC=11,在Rt△BGC中由勾股定理可得BC=14,
(或B(5,)、C(16,0)由距離公式得BC=14)(1分)
∴S△ABC=AC•BG=40(1分)

(2)在△ABC中,∵⊙P分別與邊AB、AC相切于D、E,∴AE=AD,
又∠BAC=60°,可設(shè)AE=AD=DE=x,DB=10-x,CE=16-x(1分)
過(guò)E作EH∥AB交BC于H,在△ABC中,∵EH∥AB
,得EH=(1分)
在△FEH中,∵EH∥DB∴(1分)
整理得y=-x+(0<x<10)(2分)

(3)假如△ADC與△DBF相似,∵∠DBF>∠DCA,又∠DAC=∠BDF=60°
∴只能∠DBF與∠ADC,∠BFD與∠ACD是對(duì)應(yīng)角(1分)
=,解得x1=10(舍去),x2=6(1分)
當(dāng)x=6時(shí),⊙P與邊BC相切.
證明:當(dāng)x=6時(shí),求得⊙P的半徑r=,
過(guò)P作PQ⊥BC,垂足為Q,連接PA、PB、PC,有S△ABC=S△PAB+S△PAC+S△PBC
,解得,PQ==r
∴⊙P與邊BC相切.(2分)

(4)D(3,3),E(6,0),G().(3分)
點(diǎn)評(píng):本題考查了相似三角形的判定與性質(zhì),勾股定理及切線的性質(zhì)的運(yùn)用.關(guān)鍵是根據(jù)圖形作平行線,構(gòu)造相似三角形求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個(gè)動(dòng)點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,D點(diǎn)是線段AB上一點(diǎn),連接PD.
(1)求點(diǎn)B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點(diǎn)O為圓心,3為半徑畫(huà)圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù))中任意選取一個(gè)點(diǎn),其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,3),則AC長(zhǎng)為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動(dòng)點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動(dòng),路徑為O→A→B→C,到達(dá)點(diǎn)C時(shí)停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時(shí),求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時(shí),請(qǐng)寫(xiě)出點(diǎn)P的坐標(biāo)(不要求過(guò)程,只需寫(xiě)出結(jié)果).

查看答案和解析>>

同步練習(xí)冊(cè)答案