閱讀材料

如圖①,△ABC與△DEF都是等腰直角三角形,ACB=∠EDF=90°,且點(diǎn)D在AB邊上,AB、EF的中點(diǎn)均為O,連結(jié)BF、CD、CO,顯然點(diǎn)C、F、O在同一條直線上,可以證明△BOF≌△COD,則BF=CD.解決問題:
(1)將圖①中的Rt△DEF繞點(diǎn)O旋轉(zhuǎn)得到圖②,猜想此時線段BF與CD的數(shù)量關(guān)系,并證明你的結(jié)論;
(2)如圖③,若△ABC與△DEF都是等邊三角形,AB、EF的中點(diǎn)均為O,上述(1)中的結(jié)論仍然成立嗎?如果成立,請說明理由;如不成立,請求出BF與CD之間的數(shù)量關(guān)系;
(3)如圖④,若△ABC與△DEF都是等腰三角形,AB、EF的中點(diǎn)均為0,且頂角∠ACB=∠EDF=α,請直接寫出的值(用含α的式子表示出來)
(1)BF=CD.證明詳見解析;(2)不成立,;(3).

試題分析:本題是幾何綜合題,考查了旋轉(zhuǎn)變換中相似三角形、全等三角形的判定與性質(zhì).解題關(guān)鍵是:第一,善于發(fā)現(xiàn)幾何變換中不變的邏輯關(guān)系,即△BOF≌△COD或△BOF∽△COD;第二,熟練運(yùn)用等腰直角三角形、等邊三角形、等腰三角形的相關(guān)性質(zhì).本題(1)(2)(3)問的解題思路一脈相承,由特殊到一般,有利于同學(xué)們進(jìn)行學(xué)習(xí)與探究.(1)如答圖②所示,連接OC、OD,證明△BOF≌△COD,即可得到BF=CD;
(2)如答圖③所示,連接OC、OD,可證明△BOF∽△COD,進(jìn)而求出相似比為 ;(3)如答圖④所示,連接OC、OD,證明△BOF∽△COD,進(jìn)而可求相似比為.
試題解析:
解:(1)猜想:BF=CD.理由如下:如答圖②所示,連接OC、OD.

∵△ABC為等腰直角三角形,點(diǎn)O為斜邊AB的中點(diǎn),
∴OB=OC,∠BOC=90°.
∵△DEF為等腰直角三角形,點(diǎn)O為斜邊EF的中點(diǎn),
∴OF=OD,∠DOF=90°.
∵∠BOF=∠BOC+∠COF=90°+∠COF,∠COD=∠DOF+∠COF=90°+∠COF,
∴∠BOF=∠COD.
∵在△BOF與△COD中,
∴△BOF≌△COD(SAS),
∴BF=CD.
(2)答:(1)中的結(jié)論不成立.
如答圖③所示,連接OC、OD.

∵△ABC為等邊三角形,點(diǎn)O為邊AB的中點(diǎn),
 ,∠BOC=90°
∵△DEF為等邊三角形,點(diǎn)O為邊EF的中點(diǎn),
,∠DOF=90°.

∵∠BOF=∠BOC+∠COF=90°+∠COF,∠COD=∠DOF+∠COF=90°+∠COF,
∴∠BOF=∠COD.
在△BOF與△COD中,
,∠BOF=∠COD,
∴△BOF∽△COD,
 .
(3)如答圖④所示,連接OC、OD.

∵△ABC為等邊三角形,點(diǎn)O為邊AB的中點(diǎn),
 ,∠BOC=90°
∵△DEF為等邊三角形,點(diǎn)O為邊EF的中點(diǎn),
,∠DOF=90°.

∵∠BOF=∠BOC+∠COF=90°+∠COF,∠COD=∠DOF+∠COF=90°+∠COF,
∴∠BOF=∠COD.
在△BOF與△COD中,
,∠BOF=∠COD,
∴△BOF∽△COD,
 .
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系xoy中,以點(diǎn)M(1,-1)為圓心,以為半徑作圓,與x軸交于A、B兩點(diǎn),與y軸交于C、D兩點(diǎn),二次函數(shù)的圖象經(jīng)過點(diǎn)A、B、C,頂點(diǎn)為E.

(1)求此二次函數(shù)的表達(dá)式;
(2)設(shè)∠DBC=a,∠CBE=b,求sin(a-b)的值;
(3)坐標(biāo)軸上是否存在點(diǎn)P,使得以P、A、C為頂點(diǎn)的三角形與△BCE相似.若存在,請直接寫出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知線段、滿足,則          .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在一個邊長為a(單位:cm)的正方形ABCD中.

(1)如圖1,如果N是AD中點(diǎn),F(xiàn)為AB中點(diǎn),連接DF,CN.
①求證:DF=CN;
②連接AC.求DH:HE: EF的值;
(2)如圖2,如果點(diǎn)E、M分別是線段AC、CD上的動點(diǎn),假設(shè)點(diǎn)E從點(diǎn)A出發(fā),以cm/s速度沿AC向點(diǎn)C運(yùn)動,同時點(diǎn)M從點(diǎn)C出發(fā),以1cm/s的速度沿CD向點(diǎn)D運(yùn)動,運(yùn)動時間為t(t>0),連結(jié)DE并延長交正方形的邊于點(diǎn)F,過點(diǎn)M作MN⊥DF于H,交AD于N.判斷命題“當(dāng)點(diǎn)F是邊AB中點(diǎn)時,則點(diǎn)M是邊CD的三等分點(diǎn)”的真假,并說明理由. (4分)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在正方形網(wǎng)格上有△ABC和△DEF.

(1)求證:△ABC∽△DEF;
(2)計算這兩個三角形的周長比;
(3)根據(jù)上面的計算結(jié)果,你有何猜想?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在YABCD中,E為CD上一點(diǎn),連接AE、BD,且AE、BD交于點(diǎn)F,DE:EC=2:3,則SDEF:SABF=( 。
A.2:3B.4:9C.2:5D.4:25

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

在同一時刻兩根木竿在太陽光下的影子如圖所示,其中木竿AB=2米,它的影子BC=1.6米,木竿PQ的影子有一部分落在墻上,PM=1.2米,MN=0.8米,則木竿PQ的長度是       米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

兩個相似三角形的面積比是,則它們的周長比是_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖所示,E為□ABCD的邊AD上的一點(diǎn),且AE∶ED=3∶2,CE交BD于F,則BF∶FD (        )
A.3∶5B.5∶3C.2∶5D.5∶2

查看答案和解析>>

同步練習(xí)冊答案