化簡:數(shù)學(xué)公式,并求出a=數(shù)學(xué)公式時代數(shù)式的值.

解:原式=
當a=時,
原式==2-
分析:首先把括號里因式進行通分,然后把除法運算轉(zhuǎn)化成乘法運算,進行約分化簡,最后代值計算.
點評:主要考查了分式的化簡求值問題.分式的四則運算是整式四則運算的進一步發(fā)展,是有理式恒等變形的重要內(nèi)容之一.在計算時,首先要弄清楚運算順序,先去括號,再進行分式的乘除運算.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

 根據(jù)對北京市相關(guān)的市場物價調(diào)研,預(yù)計進入夏季后的某一段時間,某批發(fā)市場內(nèi)的

甲種蔬菜的銷售利潤y1(千元)與進貨量x(噸)之間的函數(shù)的圖象如圖①所示,乙種蔬菜的銷售利潤y2(千元)與進貨量x(噸)之間的函數(shù)的圖象如圖②所示.

(1)分別求出y1y2x之間的函數(shù)關(guān)系式;

(2)如果該市場準備進甲、乙兩種蔬菜共10噸,設(shè)乙種蔬菜的進貨量為t噸,寫出這兩種蔬菜所獲得的銷售利潤之和W(千元)與t(噸)之間的函數(shù)關(guān)系式,并求出這兩種蔬菜各進多少噸時獲得的銷售利潤之和最大,最大利潤是多少?

 

 

 

 

【解析】(1)y1=kx的圖象過點(3,5.),求出k,y2=ax2+bx的圖象過點(1,2),(5,6) 求出a,b

(2)由等量關(guān)系“兩種蔬菜所獲得的銷售利潤之和=甲種蔬菜的銷售利潤+乙種蔬菜的銷售利潤”即可列出函數(shù)關(guān)系式;

用配方法化簡函數(shù)關(guān)系式即可求出w的最大值.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年廣東省潮州市潮安縣中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

化簡:,并求出a=時代數(shù)式的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年中考數(shù)學(xué)模擬檢測試卷(2)(解析版) 題型:解答題

(2012•潮安縣模擬)化簡:,并求出a=時代數(shù)式的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年北京市朝陽區(qū)中考一模數(shù)學(xué)卷(解析版) 題型:解答題

 根據(jù)對北京市相關(guān)的市場物價調(diào)研,預(yù)計進入夏季后的某一段時間,某批發(fā)市場內(nèi)的

甲種蔬菜的銷售利潤y1(千元)與進貨量x(噸)之間的函數(shù)的圖象如圖①所示,乙種蔬菜的銷售利潤y2(千元)與進貨量x(噸)之間的函數(shù)的圖象如圖②所示.

(1)分別求出y1、y2x之間的函數(shù)關(guān)系式;

(2)如果該市場準備進甲、乙兩種蔬菜共10噸,設(shè)乙種蔬菜的進貨量為t噸,寫出這兩種蔬菜所獲得的銷售利潤之和W(千元)與t(噸)之間的函數(shù)關(guān)系式,并求出這兩種蔬菜各進多少噸時獲得的銷售利潤之和最大,最大利潤是多少?

 

 

 

 

【解析】(1)y1=kx的圖象過點(3,5.),求出k,y2=ax2+bx的圖象過點(1,2),(5,6) 求出a,b

(2)由等量關(guān)系“兩種蔬菜所獲得的銷售利潤之和=甲種蔬菜的銷售利潤+乙種蔬菜的銷售利潤”即可列出函數(shù)關(guān)系式;

用配方法化簡函數(shù)關(guān)系式即可求出w的最大值.

 

查看答案和解析>>

同步練習(xí)冊答案