【題目】為了迎接鄭州市第二屆“市長杯”青少年校園足球超級聯(lián)賽,某學(xué)校組織了一次體育知識競賽.每班選25名同學(xué)參加比賽,成績分別為A、B、C、D四個(gè)等級,其中相應(yīng)等級得分依次記為100分、90分、80分、70分.學(xué)校將八年級一班和二班的成績整理并繪制成統(tǒng)計(jì)圖,如圖所示.

(1)把一班競賽成績統(tǒng)計(jì)圖補(bǔ)充完整;

(2)寫出下表中a、b、c的值:

平均數(shù)(分)

中位數(shù)(分)

眾數(shù)(分)

方差

一班

a

b

90

106.24

二班

87.6

80

c

138.24

(3)根據(jù)(2)的結(jié)果,請你對這次競賽成績的結(jié)果進(jìn)行分析.

【答案】(1)一班中C級的有2人;(2)a=87.6,b=90,c=100;(3)從平均數(shù)和中位數(shù)的角度,一班和二班平均數(shù)相等,一班的中位數(shù)大于二班的中位數(shù),故一班成績好于二班.從平均數(shù)和眾數(shù)的角度,一班和二班平均數(shù)相等,一班的眾數(shù)小于二班的眾數(shù),故二班成績好于一班.從B級以上(包括B級)的人數(shù)的角度,一班有18人,二班有12人,故一班成績好于二班.

【解析】

(1)根據(jù)總?cè)藬?shù)為25人,求出等級C的人數(shù),補(bǔ)全條形統(tǒng)計(jì)圖即可;

(2)求出一班的平均分與中位數(shù)得到ab的值,求出二班得眾數(shù)得到c的值即可;

(3)分三種情況討論,分別根據(jù)一班和二班的平均數(shù)和中位數(shù)、一班和二班的平均數(shù)和眾數(shù)以及B級以上(包括B級)的人數(shù)進(jìn)行分析,即可得出合理的答案.

(1)一班中C級的有25﹣6﹣12﹣5=2人,補(bǔ)圖如下:

(2)根據(jù)題意得:

a=(6×100+12×90+2×80+70×5)÷25=87.6;

中位數(shù)為90分,

二班的眾數(shù)為100分,

a=87.6,b=90,c=100;

(3)①從平均數(shù)和中位數(shù)的角度,一班和二班平均數(shù)相等,一班的中位數(shù)大于二班的中位數(shù),故一班成績好于二班

②從平均數(shù)和眾數(shù)的角度,一班和二班平均數(shù)相等,一班的眾數(shù)小于二班的眾數(shù),故二班成績好于一班;

③從B級以上(包括B級)的人數(shù)的角度,一班有18人,二班有12人,故一班成績好于二班.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=x+3與兩坐標(biāo)軸交于A,B兩點(diǎn),拋物線y=﹣x2+bx+cA、B兩點(diǎn),且交x軸的正半軸于點(diǎn)C.

(1)直接寫出A、B兩點(diǎn)的坐標(biāo);

(2)求拋物線的解析式和頂點(diǎn)D的坐標(biāo);

(3)在拋物線上是否存在點(diǎn)P,使得△PAB是以AB為直角邊的直角三角形?若存在,求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,圓心都在x軸正半軸上的半圓O1,半圓O2,…,半圓On與直線l相切.設(shè)半圓O1,半圓O2,…,半圓On的半徑分別是r1,r2,…,rn,則當(dāng)直線l與x軸所成銳角為30°,且r1=1時(shí),r2018_________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】10個(gè)人圍成一圈做游戲.游戲的規(guī)則是:每個(gè)人心里都想一個(gè)數(shù),并把目己想的數(shù)告訴與他相鄰的兩個(gè)人,然后每個(gè)人將與他相鄰的兩個(gè)人告訴他的數(shù)的平均數(shù)報(bào)出來,若報(bào)出來的數(shù)如圖所示,則報(bào)出來的數(shù)是3的人心里想的數(shù)是(

A.2B.C.4D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)已知是關(guān)于的方程的解,求的值

2)已知關(guān)于x的方程的解與方程的解互為倒數(shù),求的值.

(3)小麗在解關(guān)于的方程時(shí),出現(xiàn)了一個(gè)失誤:“在將移到方程的左邊時(shí),忘記了變號.”結(jié)果她得到方程的解為,求的值和原方程的解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在正方形ABCD,點(diǎn)0為正方形的中心,直線m經(jīng)過點(diǎn)0,A、B兩點(diǎn)作直線m的垂線AE、BF,垂足分別為點(diǎn)E、F,AE=2,BF=5,EF長為____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,方格紙中每個(gè)小正方形的邊長均為1.線段AB的兩個(gè)端點(diǎn)在小正方形的頂點(diǎn)上。

(1)在圖中畫一個(gè)以AB為腰的等腰三角形ABC,點(diǎn)C在小正方形的頂點(diǎn)上,且tanB=3

(2)在圖中畫一個(gè)以AB為底的等腰三角形ABD,點(diǎn)D在小正方形的項(xiàng)點(diǎn)上,ABD是銳角三角形.連接CD,請直接寫出線段CD的長。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:AB是⊙0直徑,C是⊙0外一點(diǎn),連接BC交⊙0于點(diǎn)D,BD=CD,連接ADAC.

(1)如圖1,求證:BAD=CAD

(2)如圖2,過點(diǎn)CCFAB于點(diǎn)F,交⊙0于點(diǎn)E,延長CF交⊙0于點(diǎn)G.過點(diǎn)作EHAG于點(diǎn)H,交AB于點(diǎn)K,求證AK=2OF

(3)如圖3,(2)的條件下,EHAD于點(diǎn)L,0K=1,AC=CG,求線段AL的長.

1 2 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】課本中有一探究活動:如圖1,有甲、乙兩個(gè)三角形,甲三角形內(nèi)角分別為10°,20°,150°;乙三角形內(nèi)角分別為80°,25°,75°.你能把每一個(gè)三角形分成兩個(gè)等腰三角形嗎?畫一畫,并標(biāo)出每個(gè)等腰三角形頂角的度數(shù).

(1)小明按要求畫出了圖1中甲圖的分割線,請你幫他作出圖1中乙圖的分割線;

(2)小明進(jìn)一步探究發(fā)現(xiàn):能將一個(gè)頂角為108°的等腰三角形分成三個(gè)等腰三角形;請?jiān)趫D2中用兩種不同的方法畫出分割線,并標(biāo)注每個(gè)等腰三角形頂角的度數(shù);(若兩種方法分得的三角形成3對全等三角形,則視為同一種方法)

查看答案和解析>>

同步練習(xí)冊答案