如圖,在矩形OABC中,點(diǎn)O為原點(diǎn),點(diǎn)A的坐標(biāo)為(0,8),點(diǎn)C的坐標(biāo)為(6,0).拋物線y=-
4
9
x2+bx+c經(jīng)過點(diǎn)A、C,與AB交于點(diǎn)D.
(1)求拋物線的函數(shù)解析式;
(2)點(diǎn)P為線段BC上一個(gè)動(dòng)點(diǎn)(不與點(diǎn)C重合),點(diǎn)Q為線段AC上一個(gè)動(dòng)點(diǎn),AQ=CP,連接PQ,設(shè)CP=m,△CPQ的面積為S.
①求S關(guān)于m的函數(shù)表達(dá)式;
②當(dāng)S最大時(shí),在拋物線y=-
4
9
x2+bx+c的對(duì)稱軸l上,若存在點(diǎn)F,使△DFQ為直角三角形,請(qǐng)直接寫出所有符合條件的點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說明理由.
分析:(1)將A、C兩點(diǎn)坐標(biāo)代入拋物線y=-
4
9
x2+bx+c,即可求得拋物線的解析式;
(2)①先用m表示出QE的長(zhǎng)度,進(jìn)而求出三角形的面積S關(guān)于m的函數(shù);
②直接寫出滿足條件的F點(diǎn)的坐標(biāo)即可,注意不要漏寫.
解答:解:(1)將A、C兩點(diǎn)坐標(biāo)代入拋物線,得
c=8
-
4
9
×36+6b+c=0
,
解得:
b=
4
3
c=8
,
∴拋物線的解析式為y=-
4
9
x2+
4
3
x+8;

(2)①∵OA=8,OC=6,
∴AC=
OA2+OC2
=10,
過點(diǎn)Q作QE⊥BC與E點(diǎn),則sin∠ACB=
QE
QC
=
AB
AC
=
3
5

QE
10-m
=
3
5
,
∴QE=
3
5
(10-m),
∴S=
1
2
•CP•QE=
1
2
3
5
(10-m)=-
3
10
m2+3m;

②∵S=
1
2
•CP•QE=
1
2
3
5
(10-m)=-
3
10
m2+3m=-
3
10
(m-5)2+
15
2
,
∴當(dāng)m=5時(shí),S取最大值;
在拋物線對(duì)稱軸l上存在點(diǎn)F,使△FDQ為直角三角形,
∵拋物線的解析式為y=-
4
9
x2+
4
3
x+8的對(duì)稱軸為x=
3
2

D的坐標(biāo)為(3,8),Q(3,4),
當(dāng)∠FDQ=90°時(shí),F(xiàn)1
3
2
,8),
當(dāng)∠FQD=90°時(shí),則F2
3
2
,4),
當(dāng)∠DFQ=90°時(shí),設(shè)F(
3
2
,n),
則FD2+FQ2=DQ2
9
4
+(8-n)2+
9
4
+(n-4)2=16,
解得:n=6±
7
2
,
∴F3
3
2
,6+
7
2
),F(xiàn)4
3
2
,6-
7
2
),
滿足條件的點(diǎn)F共有四個(gè),坐標(biāo)分別為
F1
3
2
,8),F(xiàn)2
3
2
,4),F(xiàn)3
3
2
,6+
7
2
),F(xiàn)4
3
2
,6-
7
2
).
點(diǎn)評(píng):本題是二次函數(shù)的綜合題,其中涉及到的知識(shí)點(diǎn)有拋物線的解析式的求法拋物線的最值等知識(shí)點(diǎn),是各地中考的熱點(diǎn)和難點(diǎn),解題時(shí)注意數(shù)形結(jié)合數(shù)學(xué)思想的運(yùn)用,同學(xué)們要加強(qiáng)訓(xùn)練,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在矩形OABC中,已知A、C兩點(diǎn)的坐標(biāo)分別為A(4,0)、C(0,2),D為OA的中點(diǎn).設(shè)點(diǎn)這P是∠AOC平分線上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)O重合).
(1)填空:無論點(diǎn)P運(yùn)動(dòng)到何處,PC
 
PD(填“>”、“<”或“=”);
(2)當(dāng)點(diǎn)P運(yùn)動(dòng)到與點(diǎn)B的距離最小時(shí),試確定過O、P、D三點(diǎn)的拋物線的解析式;
(3)設(shè)點(diǎn)E是(2)中所確定拋物線的頂點(diǎn),當(dāng)點(diǎn)P運(yùn)動(dòng)到何處時(shí),△PDE的周長(zhǎng)最?求精英家教網(wǎng)出此時(shí)點(diǎn)P的坐標(biāo)和△PDE的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在矩形OABC中,已知A、C兩點(diǎn)的坐標(biāo)分別為A(4,0)、C(0,2),D為OA的中點(diǎn).設(shè)點(diǎn)P是∠AOC精英家教網(wǎng)平分線上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)O重合).
(1)試證明:無論點(diǎn)P運(yùn)動(dòng)到何處,PC總與PD相等;
(2)當(dāng)點(diǎn)P運(yùn)動(dòng)到與點(diǎn)B的距離最小時(shí),試確定過O、P、D三點(diǎn)的拋物線的解析式;
(3)設(shè)點(diǎn)E是(2)中所確定拋物線的頂點(diǎn),當(dāng)點(diǎn)P運(yùn)動(dòng)到何處時(shí),△PDE的周長(zhǎng)最?求出此時(shí)點(diǎn)P的坐標(biāo)和△PDE的周長(zhǎng);
(4)設(shè)點(diǎn)N是矩形OABC的對(duì)稱中心,是否存在點(diǎn)P,使∠CPN=90°?若存在,請(qǐng)直接寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在矩形OABC中,AB∥x軸.函數(shù)y=
1x
(x>0)
的圖象分別交AB、BC邊于P、Q兩點(diǎn),且P是精英家教網(wǎng)AB的中點(diǎn),設(shè)點(diǎn)P的橫坐標(biāo)為a.
(1)用含a的代數(shù)式表示點(diǎn)Q的坐標(biāo).
(2)試說明點(diǎn)Q是BC的中點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•莆田質(zhì)檢)如圖,在矩形OABC中,OA、OC兩邊分別在x軸、y軸的正半軸上,OA=3,OC=2,過OA邊上的D點(diǎn),沿著BD翻折△ABD,點(diǎn)A恰好落在BC邊上的點(diǎn)E處,反比例函數(shù)y=
kx
(k>0)在第一象限上的圖象經(jīng)過點(diǎn)E與BD相交于點(diǎn)F.
(1)求證:四邊形ABED是正方形;
(2)點(diǎn)F是否為正方形ABED的中心?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•永春縣質(zhì)檢)如圖,在矩形OABC中,點(diǎn)A、C的坐標(biāo)分別是(a,0),(0,
3
),點(diǎn)D是線段BC上的動(dòng)點(diǎn)(與B、C不重合),過點(diǎn)D作直線l:y=-
3
x+b
交線段OA于點(diǎn)E.
(1)直接寫出矩形OABC的面積(用含a的代數(shù)式表示);
(2)已知a=3,當(dāng)直線l將矩形OABC分成周長(zhǎng)相等的兩部分時(shí)
①求b的值;
②梯形ABDE的內(nèi)部有一點(diǎn)P,當(dāng)⊙P與AB、AE、ED都相切時(shí),求⊙P的半徑.
(3)已知a=5,若矩形OABC關(guān)于直線DE的對(duì)稱圖形為四邊形O1A1B1C1,設(shè)CD=k,當(dāng)k滿足什么條件時(shí),使矩形OABC和四邊形O1A1B1C1的重疊部分的面積為定值,并求出該定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案