如圖,面積為2的矩形ABOC的邊OB、OC分別在x軸的負(fù)半軸和y軸的正半軸上,頂點(diǎn)A在雙曲線y=的圖象上,且OC=2.
(1)求k的值;
(2)將矩形ABOC以B為旋轉(zhuǎn)中心,逆時(shí)針旋轉(zhuǎn)90°后得到矩形BDEF,且雙曲線交DE于M點(diǎn),交EF于N點(diǎn),求△MEN的面積.

【答案】分析:(1)由圖形可知K為負(fù),且絕對(duì)值為2,所以K=-2;
(2)由題意易知點(diǎn)M、E縱坐標(biāo)為1,點(diǎn)N、E橫坐標(biāo)為-3,把Y=1代入Y=-可求點(diǎn)M橫坐標(biāo),根據(jù)坐標(biāo)意義可求線段ME、NE長(zhǎng),即解.
解答:解:(1)∵矩形ABOC的面積為2,且OC=2
∴OB=AC
∵點(diǎn)A在第二象限
∴A(-1,2)
∵頂點(diǎn)A在雙曲線y=的圖象上
∴將A點(diǎn)代入雙曲線函數(shù)中,得:2=-k,即k=-2(2分);

(2)∵矩形ABOC以B為旋轉(zhuǎn)中心,逆時(shí)針旋轉(zhuǎn)90°后得到矩形BDEF
∴點(diǎn)M、E縱坐標(biāo)為1,點(diǎn)N、E橫坐標(biāo)為-3
∴將Y=1代入Y=-中,則x=-2,將x=-3代入Y=-中,則y=
∴M(-2,1),E(-3,1),N(-3,),(5分)
∴EM=1,EN=(6分)
∴S=(7分).
點(diǎn)評(píng):此題難度中等,考查反比例函數(shù)的圖形和性質(zhì).同時(shí)同學(xué)們要熟練掌握?qǐng)D形旋轉(zhuǎn)的知識(shí)點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,面積為3的矩形OABC的一個(gè)頂點(diǎn)B在反比例函數(shù)y=
kx
的圖象上,另三點(diǎn)在坐標(biāo)軸上,則k=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,面積為8的矩形ABOC的邊OB、OC分別在x軸、y軸的正半軸上,點(diǎn)A在雙曲線y=
kx
的圖象上,且AC=2.
(1)求k值;
(2)將矩形ABOC以B旋轉(zhuǎn)中心,順時(shí)針旋轉(zhuǎn)90°后得到矩形FBDE,雙曲線交DE于M點(diǎn),交EF于N點(diǎn),求△MEN的面積.
(3)在雙曲線上是否存在一點(diǎn)P,使得直線PN與直線BC平行?若存在,請(qǐng)求出P點(diǎn)坐標(biāo),若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,面積為2的矩形ABOC的邊OB、OC分別在x軸的負(fù)半軸和y軸的正半軸上精英家教網(wǎng),頂點(diǎn)A在雙曲線y=
kx
的圖象上,且OC=2.
(1)求k的值;
(2)將矩形ABOC以B為旋轉(zhuǎn)中心,逆時(shí)針旋轉(zhuǎn)90°后得到矩形BDEF,且雙曲線交DE于M點(diǎn),交EF于N點(diǎn),求△MEN的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,面積為8的矩形ABOC的邊OB、OC分別在x軸、y軸的正半軸上,點(diǎn)A在雙曲線y=
kx
的圖象上,且AC=2.
(1)求k值;
(2)將矩形ABOC以B旋轉(zhuǎn)中心,順時(shí)針旋轉(zhuǎn)90°后得到矩形FBDE,雙曲線交DE于M點(diǎn),交EF于N點(diǎn),求△MEN的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(本題12分)
如圖,面積為8的矩形ABOC的邊OB、OC分別在軸、軸的正半軸上,點(diǎn)A在雙曲線
圖象上,且AC=2.

【小題1】(1)求值;
【小題2】(2)將矩形ABOC以B旋轉(zhuǎn)中心,順時(shí)針旋轉(zhuǎn)90°后得到矩形FBDE,雙曲線交DE于M點(diǎn),交EF于N點(diǎn),求△MEN的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案