分析 (1)由等邊三角形的性質得出∠ABC=∠ACB=60°,由SAS證明△BCD≌△CBE,得出∠BCD=∠CBE,由等角對等邊即可得出BF=CF.
(2)設∠BCD=∠CBE=x,則∠DBF=60°-x,分三種情況:①若FD=FB,則∠FBD=∠FDB>∠A,證出∠FBD<60°,得出FD=FB的情況不存在;
②若DB=DF,則∠FBD=∠BFD=2x,得出方程60°-x=2x,解方程即可得出結果;
③若BD=BF,則∠BDF=∠BFD=2x,由三角形內角和定理得出方程,解方程即可得出結果.
解答 解:(1)BF=CF;理由如下:
∵△ABC是等邊三角形,
∴∠ABC=∠ACB=60°,
在△BCD和△CBE中,$\left\{\begin{array}{l}{BD=CE}&{\;}\\{∠ABC=∠ACB}&{\;}\\{BC=CB}&{\;}\end{array}\right.$,
∴△BCD≌△CBE(SAS),
∴∠BCD=∠CBE,
∴BF=CF.
(2)由(1)得:∠BCD=∠CBE,∠ACB=60°,
設∠BCD=∠CBE=x,
∴∠DBF=60°-x,
若△BFD是等腰三角形,分三種情況:
①若FD=FB,則∠FBD=∠FDB>∠A,
∴∠FBD=∠FDB>60°,
但∠FBDxy∠ABC,
∴∠FBD<60°,
∴FD=FB的情況不存在;
②若DB=DF,則∠FBD=∠BFD=2x,
∴60°-x=2x,
解得:x=20°,
∴∠FBD=40°;
③若BD=BF,如圖所示:
則∠BDF=∠BFD=2x,
在△BDF中,∠DBF+∠BDF+∠BFD=180°,
∴60°-x+2x+2x=180°,
解得:x=40°,
∴∠FBD=20°;
綜上所述:∠FBD的度數(shù)是40°或20°.
點評 本題考查了全等三角形的判定與性質、等腰三角形的性質、三角形內角和定理、三角形的外角性質;本題(2)有一定難度,需要通過進行分類討論才能得出結果.
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | 1 | C. | 2 | D. | 5 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com