【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(﹣5,0),B5,0),D2,7),連接AD,交y軸于點(diǎn)C

1)點(diǎn)C的坐標(biāo)為   ;

2)動(dòng)點(diǎn)PB點(diǎn)出發(fā)以每秒1個(gè)單位的速度沿BA方向運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)QC點(diǎn)出發(fā),也以每秒1個(gè)單位的速度沿y軸正半軸方向運(yùn)動(dòng)(當(dāng)P點(diǎn)運(yùn)動(dòng)到A點(diǎn)時(shí),兩點(diǎn)都停止運(yùn)動(dòng)),設(shè)從出發(fā)起運(yùn)動(dòng)了x秒.

請(qǐng)用含x的代數(shù)式分別表示P,Q兩點(diǎn)的坐標(biāo);

當(dāng)x2時(shí),y軸上是否存在一點(diǎn)E,使得△AQE的面積與△APQ的面積相等?若存在,求E的坐標(biāo),若不存在,說明理由?

3)在(2)的條件下,在點(diǎn)PQ運(yùn)動(dòng)過程中,過點(diǎn)Qx軸的平行線OF(點(diǎn)GF分別位于y軸的左、右兩側(cè)),∠GQP與∠APQ的角平分線交于點(diǎn)M,則∠PMQ的大小會(huì)隨點(diǎn)P、Q的運(yùn)動(dòng)而變化嗎?如果不變化,請(qǐng)求出∠PMQ的度數(shù):若發(fā)生變化,請(qǐng)說明理由.

【答案】1)(05);(2P5x,0),Q0,5+x);存在,點(diǎn)E的坐標(biāo)為(0,18.2)或(0,﹣4.2);(3)∠PMQ的度數(shù)不變,值為90°.

【解析】

1)作DEx軸,根據(jù)點(diǎn)的坐標(biāo)求出AE、DE、AO,根據(jù)等腰直角三角形的性質(zhì)解答即可;

2)①根據(jù)題意、結(jié)合圖形解答;

②分Ey軸的正半軸和Ey軸的負(fù)半軸兩種情況,根據(jù)三角形的面積公式計(jì)算即可.

3)得出∠GQP+APQ180°,求出∠PQM+QPM90°,則∠PMQ的度數(shù)不變.

1)作DEx軸,

A(﹣50),D27),

AEDE7AO5,

∵△CAO,△DAE為直角三角形,

∴∠CAO45°

∴△CAO是等腰直角三角形,

COAO5

C0,5);

故答案為:(0,5).

2)①∵動(dòng)點(diǎn)PB點(diǎn)出發(fā)以每秒1個(gè)單位的速度沿BA方向運(yùn)動(dòng),B5,0),

P5x,0).

∵動(dòng)點(diǎn)QC點(diǎn)出發(fā)以每秒1個(gè)單位的速度沿y軸正半軸方向運(yùn)動(dòng),C0,5),

Q0,5+x).

P5x,0),Q0,5+x);

②存在.設(shè)E的坐標(biāo)為(0,y),

當(dāng)x2時(shí),SAPQ=(5+3×7÷228

情況一:Ey軸的正半軸.

y7×5÷228

y18.2

E0,18.2),

情況二:Ey軸的負(fù)半軸,

7y×5÷228,

y=﹣4.2

E0,﹣4.2),

則點(diǎn)E的坐標(biāo)為:(0,18.2)或(0,﹣4.2).

3)不變.

GFx軸,

∴∠GQP+APQ180°

QM,PM分別平分∠GQP,∠APQ,

∴∠PQMGQP,∠QPMAPQ

∴∠PQM+QPM GQP+APQ(∠GQP+APQ)=×180°90°,

∵∠PMQ+PQM+QPM180°,

∴∠PMQ180°﹣(∠PQM+QPM)=180°90°90°,

∴∠PMQ的度數(shù)不變.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)P為拋物線y=x2上一動(dòng)點(diǎn).

(1)若拋物線y=x2是由拋物線y=x+2)2﹣1通過圖象平移得到的,請(qǐng)寫出平移的過程;

(2)若直線l經(jīng)過y軸上一點(diǎn)N,且平行于x軸,點(diǎn)N的坐標(biāo)為(0,﹣1),過點(diǎn)PPMlM

①問題探究:如圖一,在對(duì)稱軸上是否存在一定點(diǎn)F,使得PM=PF恒成立?若存在,求出點(diǎn)F的坐標(biāo):若不存在,請(qǐng)說明理由.

②問題解決:如圖二,若點(diǎn)Q的坐標(biāo)為(1.5),求QP+PF的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,圓 O 的半徑為 1,過點(diǎn) A(2,0)的直線與圓 O 相切于點(diǎn) B, y 軸相交于點(diǎn) C.

(1) AB 的長(zhǎng);

(2)求直線 AB 的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,,是線段上靠近點(diǎn)的三等分點(diǎn).

(1)若點(diǎn)軸上的一動(dòng)點(diǎn),連接、,當(dāng)的值最小時(shí),求出點(diǎn)的坐標(biāo)及的最小值;

(2)如圖2,過點(diǎn),交于點(diǎn),再將繞點(diǎn)作順時(shí)針方向旋轉(zhuǎn),旋轉(zhuǎn)角度為,記旋轉(zhuǎn)中的三角形為,在旋轉(zhuǎn)過程中,直線與直線的交點(diǎn)為,直線與直線交于點(diǎn),當(dāng)為等腰三角形時(shí),請(qǐng)直接寫出的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】草莓是云南多地盛產(chǎn)的一種水果,今年某水果銷售店在草莓銷售旺季,試銷售成本為每千克20元的草莓,規(guī)定試銷期間銷售單價(jià)不低于成本單價(jià),也不高于每千克40元,經(jīng)試銷發(fā)現(xiàn),銷售量y(千克)與銷售單價(jià)x(元)符合一次函數(shù)關(guān)系,如圖是y與x的函數(shù)關(guān)系圖象.

(1)求y與x的函數(shù)解析式;

(2)設(shè)該水果銷售店試銷草莓獲得的利潤為W元,求W的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直角坐標(biāo)系中,△ABC的頂點(diǎn)都在網(wǎng)格點(diǎn)上,其中,C點(diǎn)坐標(biāo)為(12).

1)填空:點(diǎn)A的坐標(biāo)是   ,點(diǎn)B的坐標(biāo)是   ;

2)將△ABC先向左平移2個(gè)單位長(zhǎng)度,再向上平移1個(gè)單位長(zhǎng)度,得到△ABC′.請(qǐng)寫出△ABC′的三個(gè)頂點(diǎn)坐標(biāo);

3)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD的周長(zhǎng)是20 cm,以AB,AD為邊向外作正方形ABEF和正方形ADGH,若正方形ABEF和ADGH的面積之和為68 cm2,那么矩形ABCD的面積是_______cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x2+2x+m﹣2=0有兩個(gè)實(shí)數(shù)根,m為正整數(shù),且該方程的根都是整數(shù),則符合條件的所有正整數(shù)m的和為( 。

A. 6 B. 5 C. 4 D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△AEB和Rt△AFC中,BE與AC相交于點(diǎn)M,與CF相交于點(diǎn)D,AB與CF相交于N,∠E=∠F=90°,∠EAC=∠FAB,AE=AF.給出下列結(jié)論:①∠B=∠C;②CD=DN;③BE=CF;④△ACN≌△ABM.其中正確的結(jié)論是(  )

A. ①③④ B. ②③④ C. ①②③ D. ①②④

查看答案和解析>>

同步練習(xí)冊(cè)答案