20.在Rt△ABC中,∠ABD=90°,AE=BD,AB=CD,連接CE、AD兩線交于P,則∠CPD=45°.

分析 如圖,作CM⊥BC,且CM=AE,即可得出CM=BD,證得四邊形AMCE是平行四邊形,即可證得AM∥CE,通過(guò)SAS證得△CDM≌△BAD(SAS),根據(jù)三角形全等的性質(zhì)得出MD=AD,∠MDC=∠DAB,進(jìn)而求得△ADM是等腰直角三角形,得出∠MAD=45°,根據(jù)平行線的性質(zhì)即可證得∠CPD=∠MAD=45°.

解答 解:如圖,作CM⊥BC,且CM=AE,
∵AE=BD,
∴CM=BD,
∵∠ADB=90°,
∴AE∥CM,
∴四邊形AMCE是平行四邊形,
∴AM∥CE,
在△CDM和△BAD中,
$\left\{\begin{array}{l}{CM=BD}\\{∠MCD=∠ABD=90°}\\{CD=AB}\end{array}\right.$,
∴△CDM≌△BAD(SAS),
∴MD=AD,∠MDC=∠DAB,
∵∠ADB+∠DAB=90°,
∴∠MDC+∠ADB=90°,
∴∠ADM=90°,
∴△ADM是等腰直角三角形,
∴∠MAD=45°,
∴∠CPD=∠MAD=45°.
故答案為45°.

點(diǎn)評(píng) 本題考查了全等三角形的判定和性質(zhì),等腰直角三角形的判定和性質(zhì),平行四邊形的判定和性質(zhì),找出輔助線構(gòu)建全等三角形和等腰直角三角形是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

3.如圖,將一塊三角板的直角頂點(diǎn)放在直尺的一邊上,當(dāng)∠1=55°時(shí),∠2=35°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

4.二次函數(shù)y=x2-6x+3m的圖象與x軸有公共點(diǎn),則m的取值范值是m≤3.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知二次函數(shù)y1=-x2-2mx-m2-1(m是常數(shù)).
(1)求證:不論m為何值,該函數(shù)的圖象與x軸沒(méi)有公共點(diǎn);
(2)當(dāng)m=1時(shí),將函數(shù)y1=-x2-2mx-m2-1的圖象向上平移5個(gè)單位,得到函數(shù)y2=-x2+bx+c的圖象,且y2=-x2+bx+c的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),與y軸交于點(diǎn)C,如圖所示.
①求點(diǎn)A、B、C的坐標(biāo);
②如圖,矩形MPQN的頂點(diǎn)M、N在線段AB上(點(diǎn)M在點(diǎn)N的坐標(biāo)且不與點(diǎn)A、B重合),頂點(diǎn)P、Q在拋物線上A、B之間部分的圖象上,過(guò)A、C兩點(diǎn)的直線與矩形邊MP相交于點(diǎn)E,當(dāng)矩形MPQN的周長(zhǎng)最大時(shí),求△AME的面積;
③當(dāng)矩形MPQN的周長(zhǎng)最大時(shí),在坐標(biāo)軸上是否存在點(diǎn)D,使得△ACD的面積與②中△AME的面積相等?若存在,求出點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.如圖,已知⊙O的直徑AB=5,點(diǎn)P是AB延長(zhǎng)線上的一點(diǎn),且PB=2,過(guò)點(diǎn)P的一直線交⊙O于點(diǎn)C和點(diǎn)D.若PD=x,PC=y,則下列最能反映y關(guān)于x的函數(shù)關(guān)系的圖象是(  )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知在∠MON中,A,B分別為ON,OM上一點(diǎn).
(1)如圖,若CD⊥OB于D,OC平分∠MON,OA+OB=2OD,求證:∠MON+∠ACB=180°;
(2)若CD⊥OB于D,OC平分∠MON,∠MON+∠ACB=180°,求證:OA+OB=2OD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

12.如圖,△ABC和△CDE都是等邊三角形,A、C、D在同一直線上,連接AE,BD.交點(diǎn)為F,連接CF,求證:CF平分∠AFD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

9.不等式-2a<6的解是a>-3.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

10.解下列不等式,并把解集在數(shù)軸上表示出來(lái):
(1)3x+4≤6+2(x-2)
(2)$\frac{3x-2}{5}$≥$\frac{2x+1}{3}$-1.

查看答案和解析>>

同步練習(xí)冊(cè)答案