已知點(diǎn)P(x0,y0)和直線y=kx+b,則點(diǎn)P到直線y=kx+b的距離d可用公式d=
|kx0-y0+b|
1+k2
計(jì)算.
例如:求點(diǎn)P(-2,1)到直線y=x+1的距離.
解:因?yàn)橹本y=x+1可變形為x-y+1=0,其中k=1,b=1.
所以點(diǎn)P(-2,1)到直線y=x+1的距離為d=
|kx0-y0+b|
1+k2
=
|1×(-2)-1+1|
1+12
=
2
2
=
2

根據(jù)以上材料,求:
(1)點(diǎn)P(1,1)到直線y=3x-2的距離,并說(shuō)明點(diǎn)P與直線的位置關(guān)系;
(2)點(diǎn)P(2,-1)到直線y=2x-1的距離;
(3)已知直線y=-x+1與y=-x+3平行,求這兩條直線的距離.
考點(diǎn):一次函數(shù)綜合題
專題:代數(shù)綜合題
分析:(1)根據(jù)條件的P的坐標(biāo)和點(diǎn)到直線的距離公式可以直接求出結(jié)論;
(2)直接將P點(diǎn)的坐標(biāo)代入公式d=
|kx0-y0+b|
1+k2
就可以求出結(jié)論;
(3)在直線y=-x+1任意取一點(diǎn)P,求出P點(diǎn)的坐標(biāo),然后代入點(diǎn)到直線的距離公式d=
|kx0-y0+b|
1+k2
就可以求出結(jié)論.
解答:解:(1)∵點(diǎn)P(1,1),
∴點(diǎn)P到直線y=3x-2的距離為:
d=
|3×1-1-2|
1+32
=0,
∴點(diǎn)P在直線y=3x-2上;

(2)由題意,得
∵y=2x-1
∴k=2,b=-1.
∵P(2,-1),
∴d=
|2×2-(-1)-1|
1+22
=
4
5
5

∴點(diǎn)P(2,-1)到直線y=2x-1的距離為
4
5
5
;

(3)在直線y=-x+1任意取一點(diǎn)P,
當(dāng)x=0時(shí),y=1.
∴P(0,1).
∵直線y=-x+3,
∴k=-1,b=3,
∴d=
|-0-1+3|
1+(-1)2
=
2
,
∴兩平行線之間的距離為
2
點(diǎn)評(píng):本題考查了一次函數(shù)的點(diǎn)與直線之間的距離公式的運(yùn)用,由函數(shù)的解析式求點(diǎn)的坐標(biāo)的運(yùn)用,平行線的性質(zhì)的運(yùn)用,解答時(shí)掌握點(diǎn)到直線的距離公式是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

把不等式組
x+1<3
2x+7≥1
的解集在數(shù)軸上表示正確的是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)系中,直線y=-
4
3
x+b與x軸交于點(diǎn)A(6,0),與y軸交于點(diǎn)B.
(1)填空:b=
 
;
(2)點(diǎn)C在線段OB上,其坐標(biāo)為(0,m),過(guò)點(diǎn)C作CE⊥AB于點(diǎn)E,點(diǎn)D為線段OA上的一個(gè)動(dòng)點(diǎn),連接CD、DE.
①當(dāng)m=3,且DE∥y軸時(shí),求點(diǎn)D的坐標(biāo);
②在點(diǎn)D運(yùn)動(dòng)的過(guò)程中,是否存在以CE為直徑的圓恰好與x軸相切于點(diǎn)D?若存在,求出m的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,菱形ABCD中,對(duì)角線AC,BD相交于點(diǎn)O,且AC=12cm,BD=16cm.點(diǎn)P從點(diǎn)B出發(fā),沿BA方向勻速運(yùn)動(dòng),速度為1cm/s;同時(shí),直線EF從點(diǎn)D出發(fā),沿DB方向勻速運(yùn)動(dòng),速度為1cm/s,EF⊥BD,且與AD,BD,CD分別交于點(diǎn)E,Q,F(xiàn);當(dāng)直線EF停止運(yùn)動(dòng)時(shí),點(diǎn)P也停止運(yùn)動(dòng).連接PF,設(shè)運(yùn)動(dòng)時(shí)間為t(s)(0<t<8).解答下列問(wèn)題:
(1)當(dāng)t為何值時(shí),四邊形APFD是平行四邊形?
(2)設(shè)四邊形APFE的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式;
(3)是否存在某一時(shí)刻t,使S四邊形APFE:S菱形ABCD=17:40?若存在,求出t的值,并求出此時(shí)P,E兩點(diǎn)間的距離;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

解方程組
(1)
x-2y=1
3x-5y=8
;                         
(2)
x+1
5
-
y-1
2
=-1
x+y=2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在等邊△ABC中,以BC為直徑的⊙O與AB交于點(diǎn)D,DE⊥AC,垂足為點(diǎn)E.
(1)求證:DE為⊙O的切線;
(2)計(jì)算
CE
AE

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

因式分解
(1)x3-xy2;                     
(2)ab3-10a2b2+25a3b.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

某商場(chǎng)為了吸引顧客,設(shè)立了可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤(如圖,轉(zhuǎn)盤被均勻分為20份),并規(guī)定:顧客每購(gòu)買200元的商品,就能獲得一次轉(zhuǎn)動(dòng)轉(zhuǎn)盤的機(jī)會(huì).如果轉(zhuǎn)盤停止后,指針正好對(duì)準(zhǔn)紅色、黃色、綠色區(qū)域,那么顧客就可以分別獲得200元、100元、50元的購(gòu)物券,憑購(gòu)物券可以在該商場(chǎng)繼續(xù)購(gòu)物.如果顧客不愿意轉(zhuǎn)轉(zhuǎn)盤,那么可以直接獲得購(gòu)物券30元.
(1)求轉(zhuǎn)動(dòng)一次轉(zhuǎn)盤獲得購(gòu)物券的概率;
(2)轉(zhuǎn)轉(zhuǎn)盤和直接獲得購(gòu)物券,你認(rèn)為哪種方式對(duì)顧客更合算?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

當(dāng)5個(gè)整數(shù)從小到大排列后,其中位數(shù)為4,如果這組數(shù)據(jù)的唯一眾數(shù)是6,那么這5個(gè)數(shù)的和的最大值是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案