【題目】如圖,在平行四邊形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,AB=OB,點(diǎn)E、點(diǎn)F分別是OA、OD的中點(diǎn),連接EF,CEF=45°,EMBC于點(diǎn)M,EMBD于點(diǎn)N,F(xiàn)N=,則線段BC的長(zhǎng)為_____

【答案】

【解析】設(shè)EF=x,根據(jù)三角形的中位線定理表示AD=2x,ADEF,可得∠CAD=CEF=45°,證明EMC是等腰直角三角形,則∠CEM=45°,證明ENF≌△MNB,則EN=MN=x,BN=FN=,最后利用勾股定理計(jì)算x的值,可得BC的長(zhǎng).

設(shè)EF=x,

∵點(diǎn)E、點(diǎn)F分別是OA、OD的中點(diǎn),

EFOAD的中位線,

AD=2x,ADEF,

∴∠CAD=CEF=45°,

∵四邊形ABCD是平行四邊形,

ADBC,AD=BC=2x,

∴∠ACB=CAD=45°,

EMBC,

∴∠EMC=90°,

∴△EMC是等腰直角三角形,

∴∠CEM=45°,

連接BE,

AB=OB,AE=OE

BEAO

∴∠BEM=45°,

BM=EM=MC=x,

BM=FE,

易得ENF≌△MNB,

EN=MN=x,BN=FN=,

RtBNM中,由勾股定理得:BN2=BM2+MN2

()2x2+(x)2,

x=2-2(舍),

BC=2x=4

故答案為:4

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,ACBD相交于點(diǎn)O,過點(diǎn)O的線段EF與一組對(duì)邊AB,CD分別相交于點(diǎn)E,F(xiàn).

(1)求證:AE=CF;

(2)若AB=2,點(diǎn)EAB中點(diǎn),求EF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小英和小倩站在正方形的對(duì)角A,C兩點(diǎn)處,小英以2/秒的速度走向點(diǎn)D處,途中位置記為P,小倩以3/秒的速度走向點(diǎn)B處,途中位置記為Q,假設(shè)兩人同時(shí)出發(fā),已知正方形的邊長(zhǎng)為8米,EAB上,AE=6米,記三角形AEP的面積為S1平方米,三角形BEQ的面積為S2平方米,如圖所示.

1)她們出發(fā)后幾秒時(shí)S1=S2;

2)當(dāng)S1+S2=15時(shí),小倩距離點(diǎn)B處還有多遠(yuǎn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,函數(shù)y=x的圖象與函數(shù)y=(x>0)的圖象相交于點(diǎn)P(2,m).

(1)求m,k的值;

(2)直線y=4與函數(shù)y=x的圖象相交于點(diǎn)A,與函數(shù)y=(x>0)的圖象相交于點(diǎn)B,求線段AB長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某藥廠銷售部門根據(jù)市場(chǎng)調(diào)研結(jié)果,對(duì)該廠生產(chǎn)的一種新型原料藥未來兩年的銷售進(jìn)行預(yù)測(cè),井建立如下模型:設(shè)第t個(gè)月該原料藥的月銷售量為P(單位:噸),Pt之間存在如圖所示的函數(shù)關(guān)系,其圖象是函數(shù)P=(0<t≤8)的圖象與線段AB的組合;設(shè)第t個(gè)月銷售該原料藥每噸的毛利潤(rùn)為Q(單位:萬元),Qt之間滿足如下關(guān)系:Q=

(1)當(dāng)8<t≤24時(shí),求P關(guān)于t的函數(shù)解析式;

(2)設(shè)第t個(gè)月銷售該原料藥的月毛利潤(rùn)為w(單位:萬元)

①求w關(guān)于t的函數(shù)解析式;

②該藥廠銷售部門分析認(rèn)為,336≤w≤513是最有利于該原料藥可持續(xù)生產(chǎn)和銷售的月毛利潤(rùn)范圍,求此范圍所對(duì)應(yīng)的月銷售量P的最小值和最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,AC=5cm,BC=12cm.動(dòng)點(diǎn)PA點(diǎn)出發(fā)沿AC的路徑向終點(diǎn)C運(yùn)動(dòng);動(dòng)點(diǎn)QB點(diǎn)出發(fā)沿BCA路徑向終點(diǎn)A運(yùn)動(dòng).點(diǎn)P和點(diǎn)Q分別以每秒1cm3cm的運(yùn)動(dòng)速度同時(shí)開始運(yùn)動(dòng),其中一點(diǎn)到達(dá)終點(diǎn)時(shí)另一點(diǎn)也停止運(yùn)動(dòng),在某時(shí)刻,分別過點(diǎn)PQPEMNE,QFMNF.則點(diǎn)P運(yùn)動(dòng)時(shí)間為_____秒時(shí),△PEC與△QFC全等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】每到春夏交替時(shí)節(jié),雌性楊樹會(huì)以滿天飛絮的方式來傳播下一代,漫天飛舞的楊絮易引發(fā)皮膚病、呼吸道疾病等,給人們?cè)斐衫_,為了解市民對(duì)治理?xiàng)钚醴椒ǖ馁澩闆r,某課題小組隨機(jī)調(diào)查了部分市民(問卷調(diào)查表如表所示),并根據(jù)調(diào)查結(jié)果繪制了如下尚不完整的統(tǒng)計(jì)圖.

治理?xiàng)钚跻灰荒x哪一項(xiàng)?(單選)

A.減少楊樹新增面積,控制楊樹每年的栽種量

B.調(diào)整樹種結(jié)構(gòu),逐漸更換現(xiàn)有楊樹

C.選育無絮楊品種,并推廣種植

D.對(duì)雌性楊樹注射生物干擾素,避免產(chǎn)生飛絮

E.其他

根據(jù)以上統(tǒng)計(jì)圖,解答下列問題:

(1)本次接受調(diào)查的市民共有  人;

(2)扇形統(tǒng)計(jì)圖中,扇形E的圓心角度數(shù)是   ;

(3)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;

(4)若該市約有90萬人,請(qǐng)估計(jì)贊同選育無絮楊品種,并推廣種植的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖∠ABC=∠ADC90°,M,N分別是AC、BD的中點(diǎn).

1)求證:MNBD

2)若∠BAD45°,連接MB、MD,判斷MBD的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將矩形紙片ABCD折疊,使邊AD落在對(duì)角線BD上,折痕為DE,且A點(diǎn)落在對(duì)角線F處.若AD=3,CD=4,則AE的長(zhǎng)為(

A. B. 1 C. 2 D.

查看答案和解析>>

同步練習(xí)冊(cè)答案