【題目】如圖,∠AOB=45°,點(diǎn)M,N在邊OB上,OMxONx+4,點(diǎn)P是邊OA上的點(diǎn),且△PMN是等腰三角形.在x>2的條件下,(1)當(dāng)x______時(shí),符合條件的點(diǎn)P只有一個(gè);(2)當(dāng)x______時(shí),符合條件的點(diǎn)P恰好有三個(gè).(兩個(gè)小題都只寫出一個(gè)數(shù)即可)

【答案】x>的數(shù)均可; 4<x<的數(shù)均可;

【解析】

1)當(dāng)點(diǎn)MOA的距離=MN時(shí),符合題意的等腰三角形有兩個(gè),此時(shí)點(diǎn)P就在垂足位置和或MN的垂直平分線與OA的交點(diǎn)處;所以當(dāng)點(diǎn)MOA的距離>MN,符合題意的等腰三角形就只有一個(gè),此時(shí)點(diǎn)P就是MN的垂直平分線與OA的交點(diǎn);

2)分三種情況討論:先確定特殊位置時(shí)成立的x值,
①如圖1,當(dāng)MO重合時(shí),即x=0時(shí),點(diǎn)P恰好有三個(gè);
②如圖2,構(gòu)建腰長為4的等腰直角OMC,和半徑為4的⊙M,發(fā)現(xiàn)M在點(diǎn)D的位置時(shí),滿足條件;
③如圖3,根據(jù)等腰三角形三種情況的畫法:分別以M、N為圓心,以MN為半徑畫弧,與OB的交點(diǎn)就是滿足條件的點(diǎn)P,再以MN為底邊的等腰三角形,通過畫圖發(fā)現(xiàn),無論x取何值,以MN為底邊的等腰三角形都存在一個(gè),所以只要滿足以MN為腰的三角形有兩個(gè)即可.

解:(1)過點(diǎn)MMCOA于點(diǎn)C,

MN=ON-OM=(x+4)-x=4,

∴當(dāng)MC=MN=4時(shí),點(diǎn)P在點(diǎn)C位置可以構(gòu)成等腰三角形,此時(shí)MN=MP=4;點(diǎn)P在線段MN的垂直平分線與OA的交點(diǎn)處,也可以構(gòu)成等腰三角形,此時(shí)PM=PN.即可以作兩個(gè)等腰三角形,此時(shí)OM= =.4 ,當(dāng)OM>4時(shí),點(diǎn)MOA的距離就會(huì)大于4,即MC>MN,OA上就不存在點(diǎn)P,使PM=MN=4,,只有PM=PN,所以當(dāng)x>.4時(shí),符合條件的點(diǎn)P只有一個(gè);

2)解:分三種情況:
①如圖1,當(dāng)MO重合時(shí),即x=0時(shí),點(diǎn)P恰好有三個(gè);

②如圖2,以M為圓心,以4為半徑畫圓,當(dāng)⊙MOB相切時(shí),設(shè)切點(diǎn)為C,⊙MOA交于D,

MCOB,
∵∠AOB=45°
∴△MCO是等腰直角三角形,
MC=OC=4
OM=4,
當(dāng)MD重合時(shí),即x=OM-DM=4-4時(shí),同理可知:點(diǎn)P恰好有三個(gè);
③如圖3,取OM=4,以M為圓心,以OM為半徑畫圓,


則⊙MOB除了O外只有一個(gè)交點(diǎn),此時(shí)x=4,即以∠PMN為頂角,MN為腰,符合條件的點(diǎn)P有一個(gè),以N圓心,以MN為半徑畫圓,與直線OB相離,說明此時(shí)以∠PNM為頂角,以MN為腰,符合條件的點(diǎn)P不存在,還有一個(gè)是以NM為底邊的符合條件的點(diǎn)P;
點(diǎn)M沿OA運(yùn)動(dòng),到M1時(shí),發(fā)現(xiàn)⊙M1與直線OB有一個(gè)交點(diǎn);
∴當(dāng)4x4

時(shí),圓M在移動(dòng)過程中,則會(huì)與OB除了O外有兩個(gè)交點(diǎn),滿足點(diǎn)P恰好有三個(gè);
綜上所述,若使點(diǎn)P,MN構(gòu)成等腰三角形的點(diǎn)P恰好有三個(gè),則x的值是:x=0x=4-44x4
故答案為:x=0x=4-44x4中的任意一個(gè)數(shù)即可

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在美化校園的活動(dòng)中,某興趣小組想借助如圖所示的直角墻角(兩邊足夠長),用32m長的籬笆圍成一個(gè)矩形花園ABCD(籬笆只圍AB,BC兩邊),設(shè)ABxm

(1)若花園的面積為252m2,求x的值;

(2)若在P處有一棵樹與墻CD,AD的距離分別是17m6m,要將這棵樹圍在花園內(nèi)(含邊界,不考慮樹的粗細(xì)),求花園面積S的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD中,過點(diǎn)B的直線與對(duì)角線AC、邊AD分別交于點(diǎn)EF.過點(diǎn)EEG∥BC,交ABG,則圖中相似三角形有( )

A. 4對(duì)B. 5對(duì)C. 6對(duì)D. 7對(duì)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,弦BC=6cm,AC=8cm.若動(dòng)點(diǎn)P2cm/s的速度從B點(diǎn)出發(fā)沿著B→A的方向運(yùn)動(dòng),點(diǎn)Q1cm/s的速度從A點(diǎn)出發(fā)沿著A→C的方向運(yùn)動(dòng),當(dāng)點(diǎn)P到達(dá)點(diǎn)A時(shí),點(diǎn)Q也隨之停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t(s),當(dāng)APQ是直角三角形時(shí),t的值為___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,以AC為直徑作⊙O,交ABD,過點(diǎn)OOEAB,交BCE.

(1)求證:ED為⊙O的切線;

(2)如果⊙O的半徑為,ED=2,延長EO交⊙OF,連接DF、AF,求ADF的面積.

【答案】(1)證明見解析;(2)

【解析】試題分析:(1)首先連接OD,由OEAB,根據(jù)平行線與等腰三角形的性質(zhì),易證得 即可得,則可證得的切線;
(2)連接CD,根據(jù)直徑所對(duì)的圓周角是直角,即可得 利用勾股定理即可求得的長,又由OEAB,證得根據(jù)相似三角形的對(duì)應(yīng)邊成比例,即可求得的長,然后利用三角函數(shù)的知識(shí),求得的長,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

試題解析:(1)證明:連接OD,

OEAB

∴∠COE=CADEOD=ODA,

OA=OD,

∴∠OAD=ODA

∴∠COE=DOE,

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD,

ED的切線;

(2)連接CD,交OEM

RtODE中,

OD=32,DE=2,

OEAB

∴△COE∽△CAB,

AB=5,

AC是直徑,

EFAB,

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面積為

型】解答
結(jié)束】
25

【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個(gè)公共點(diǎn)M(1,0),且a<b.

(1)求ba的關(guān)系式和拋物線的頂點(diǎn)D坐標(biāo)(用a的代數(shù)式表示);

(2)直線與拋物線的另外一個(gè)交點(diǎn)記為N,求DMN的面積與a的關(guān)系式;

(3)a=﹣1時(shí),直線y=﹣2x與拋物線在第二象限交于點(diǎn)G,點(diǎn)G、H關(guān)于原點(diǎn)對(duì)稱,現(xiàn)將線段GH沿y軸向上平移t個(gè)單位(t>0),若線段GH與拋物線有兩個(gè)不同的公共點(diǎn),試求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,有“拋物線系”y=-(xm2+4m-3,頂點(diǎn)為點(diǎn)P,這些拋物線的形狀與拋物線 y=-x2 相同,但頂點(diǎn)位置不同.

(1)填寫下表,并說出:在m取不同數(shù)值時(shí),點(diǎn)P位置的變化具有什么特征?

m的值

-1

0

1

2

點(diǎn)P坐標(biāo)

(2)若拋物線的對(duì)稱軸是直線x=1,則可確定m的值.點(diǎn)Mpq)為此拋物線上的一個(gè)動(dòng)點(diǎn),且﹣1<p<2,而直線ykx-4(k≠0)始終經(jīng)過點(diǎn)M

①求此拋物線與x軸的交點(diǎn)坐標(biāo);

②求k的取值范圍.

(3)若點(diǎn)Qx軸上,點(diǎn)S(0,-1)在y軸上,點(diǎn)R在坐標(biāo)平面內(nèi),且以點(diǎn)P,Q,R,S為頂點(diǎn)的四邊形是正方形,試直接寫出所有點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,MN為⊙O的直徑,ME是⊙O的弦,MD垂直于過點(diǎn)E的直線DE,垂足為點(diǎn)D,且ME平分∠DMN

求證:(1DE是⊙O的切線;

2ME2MDMN

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知:⊙O的直徑AB與弦AC的夾角∠A30°,過點(diǎn)C作⊙O的切線交AB的延長線于點(diǎn)P

1)求證:ACCP;

2)若PC6,求圖中陰影部分的面積(結(jié)果精確到0.1).(參考數(shù)據(jù):,π3.14

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在x軸的正半軸上依次間隔相等的距離取點(diǎn)A1,A2,A3,A4,…,An,分別過這些點(diǎn)做x軸的垂線與反比例函數(shù)y的圖象相交于點(diǎn)P1,P2,P3,P4,…Pn,再分別過P2P3,P4,…PnP2B1A1P1,P3B2A2P2,P4B3A3P3,…,PnBn1An1Pn1,垂足分別為B1B2,B3,B4,…,Bn1,連接P1P2,P2P3,P3P4,…,Pn1Pn,得到一組RtP1B1P2,RtP2B2P3,RtP3B3P4,…,RtPn1Bn1Pn,則RtPn1Bn1Pn的面積為_____

查看答案和解析>>

同步練習(xí)冊(cè)答案