在一次研究性學(xué)習(xí)活動中,某同學(xué)用了如下方法畫直角三角形,方法是(如圖所示):

畫線段AB,分別以點A、B為圓心,以大于的長為半徑畫弧,兩弧相交于點C,連結(jié)AC;再以點C為圓心,以AC長為半徑畫弧,交AC延長線于D,連結(jié)DB.則△ABD就是直角三角形.

⑴ 請你說明其中的道理;

⑵ 請利用上述方法作一個直角三角形,使其一個銳角為30°(不寫作法,保留作圖痕跡).

解:(1)理由:連接BC,由作圖可知,AC=BC=CD,

  ∴∠A=∠ABC,∠CBD=∠CDB         

  ∵∠A+∠ABC+∠CBD+∠CDB=180°

  ∴2∠ABC+2∠CBD=180°

  ∴∠ABC+∠CBD=90°,.即∠ABD=90°

  ∴△ABD是直角三角形       

  (2)如右圖所示 

  則△EFG就是所求作的直角三角形,其中∠EGF=30°。

  

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)在一次研究性學(xué)習(xí)活動中,某小組將兩張互相重合的正方形紙片ABCD和EFGH的中心O用圖釘固定住,保持正方形ABCD不動,順時針旋轉(zhuǎn)正方形EFGH,如圖所示.
(1)小組成員經(jīng)觀察、測量,發(fā)現(xiàn)在旋轉(zhuǎn)過程中,有許多有趣的結(jié)論.下面是旋轉(zhuǎn)角度小于90°時他們得到的一些猜想:
①ME=MA;
②兩張正方形紙片的重疊部分的面積為定值;
③∠MON保持45°不變.
請你對這三個猜想作出判斷(正確的在序號后的括號內(nèi)打上“√”,錯誤的打上“×”):
①( 。;②( 。;③(  )
(2)小組成員還發(fā)現(xiàn):(1)中的△EMN的面積S隨著旋轉(zhuǎn)角度∠AOE的變化而變化.請你指出在怎樣的位置時△EMN的面積S取得最大值.(不必證明)
(3)上面的三個猜想中若有正確的,請選擇其中的一個給予證明;若都是錯誤的,請選擇其一說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•鄞州區(qū)模擬)在一次研究性學(xué)習(xí)活動中,某小組將兩張互相重合的正方形紙片ABCD和EFGH的中心O用圖釘固定住,保持正方形ABCD不動,順時針旋轉(zhuǎn)正方形EFGH,如圖所示.
(1)小組成員經(jīng)觀察、測量,發(fā)現(xiàn)在旋轉(zhuǎn)過程中,有許多有趣的結(jié)論.下面是旋轉(zhuǎn)角度小于90°時他們得到的一些猜想:
①ME=MA
②兩張正方形紙片的重疊部分的面積為定值;
③∠MON保持45°不變.
請你對這三個猜想做出判斷(正確的在序號后的括號內(nèi)打上“√”,錯誤的打上“×”):
  ②
×
×
 ③

(2)上面的三個猜想中若有正確的,請選擇其中的一個給予證明;若都是錯誤的,請選擇其一說明理由.
(3)小組成員還發(fā)現(xiàn):(1)中的△ENN的面積S隨著旋轉(zhuǎn)角度∠AOE的變化而變化.請你指出當(dāng)旋轉(zhuǎn)角∠AOE為多少度時△ENN的面積S取得最大值.(不必證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在一次研究性學(xué)習(xí)活動中,某小組將兩張互相重合的正方形紙片ABCD和EFGH的中心O用圖釘固定住,保持正方形ABCD不動,順時針旋轉(zhuǎn)正方形EFGH,如圖所示.小組成員經(jīng)觀察、測量,發(fā)現(xiàn)在旋轉(zhuǎn)過程中,有許多有趣的結(jié)論.下面是旋轉(zhuǎn)角度小于90°時他們得到的一些猜想:
①ME=MA;
②兩張正方形紙片的重疊部分的面積為定值;
③∠MON保持45°不變;
④△EMN的面積S隨著旋轉(zhuǎn)角度∠AOE的變化而變化.當(dāng)旋轉(zhuǎn)角∠AOE為45°時△ENN的面積S取得最大值.
請你對這四個猜想作出判斷,把正確的猜想序號寫在橫線上
①③④
①③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012屆浙江省九年級下學(xué)期3月考數(shù)學(xué)卷(解析版) 題型:填空題

在一次研究性學(xué)習(xí)活動中,某小組將兩張互相重合的正方形紙片ABCD和EFGH的中心O用圖釘固定住,保持正方形ABCD不動,順時針旋轉(zhuǎn)正方形EFGH,如圖所示.小組成員經(jīng)觀察、測量,發(fā)現(xiàn)在旋轉(zhuǎn)過程中,有許多有趣的結(jié)論.下面是旋轉(zhuǎn)角度小于90°時他們得到的一些猜想:

①ME=MA

②兩張正方形紙片的重疊部分的面積為定值;

③∠MON保持45°不變.

④△EMN的面積S隨著旋轉(zhuǎn)角度∠AOE的變化而變化.當(dāng)旋轉(zhuǎn)角∠AOE為45°時△ENN的面積S取得最大值.

請你對這四個猜想作出判斷,把正確的猜想序號寫在橫線上              

 

查看答案和解析>>

同步練習(xí)冊答案