已知⊙O1和⊙O2的半徑分別是一元二次方程x2-2x+
89
=0
的兩根,且O1O2=1,則⊙O1和⊙O2的位置關系是
 
分析:由⊙O1和⊙O2的半徑分別是一元二次方程x2-2x+
8
9
=0的兩根,解方程即可求得⊙O1和⊙O2的半徑,又由O1O2=1,即可根據(jù)兩圓位置關系與圓心距d,兩圓半徑R,r的數(shù)量關系間的聯(lián)系得出兩圓位置關系.
解答:解:∵x2-2x+
8
9
=0,
解得:x=
2
3
或x=
4
3
,
又∵⊙O1和⊙O2的半徑分別是一元二次方程x2-2x+
8
9
=0的兩根,
∴⊙O1和⊙O2的半徑分別是
2
3
4
3
,
2
3
+
4
3
=2,
4
3
-
2
3
=
2
3
,且O1O2=1,
∴⊙O1和⊙O2的位置關系是相交.
故答案為:相交.
點評:此題考查了圓與圓的位置關系與一元二次方程的解法.注意掌握兩圓位置關系與圓心距d,兩圓半徑R,r的數(shù)量關系間的聯(lián)系是解此題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

6、已知⊙O1和⊙O2的半徑分別為3cm和4cm,圓心距O1O2=6cm,那么⊙O1和⊙O2的位置關系是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知⊙O1和⊙O2的半徑分別為R、r,連接O1O2交⊙O1于點M、交⊙O2于點N.將一個直角三角尺的直角頂點C放在直線O1O2的上方,讓兩個直角邊所在的直線分別經(jīng)過點M、N,CM交⊙O1于點A,CN交⊙O2于點B.
(1)求證:O1A∥O2B;
(2)直線AB和直線O1O2能否平行?若能夠,試指出什么條件下,AB∥O1O2;若不能,試說明理由.
(3)是否存在一點C,使CM•CA=CN•CB?若存在,請說明如何確定點C的位置,并證明你的結論;如果不存在,請說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

4、已知⊙O1和⊙O2的半徑分別為3cm和5cm,兩圓的圓心距是6cm,則兩圓的位置關系是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

17、已知⊙O1和⊙O2的半徑分別為2cm和4cm,當圓心距O1O2的長度在
0≤O1O2<2或O1O2>6
范圍內(nèi)取值時,兩圓無公共點.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知⊙O1和⊙O2的半徑分別為3cm和4cm,圓心距O1O2=6cm,那么⊙O1和⊙O2的位置關系是
相交
相交

查看答案和解析>>

同步練習冊答案