【題目】已知∠AOB,作圖.
步驟1:在OB上任取一點M,以點M為圓心,MO長為半徑畫半圓,分別交OA、OB于點P、Q;
步驟2:過點M作PQ的垂線交 于點C;
步驟3:畫射線OC.

則下列判斷:① = ;②MC∥OA;③OP=PQ;④OC平分∠AOB,其中正確的個數(shù)為( )
A.1
B.2
C.3
D.4

【答案】C
【解析】∵OQ為直徑,

∴∠OPQ=90°,OA⊥PQ.

∵MC⊥PQ,

∴OA∥MC,結論②正確;

∵OA∥MC,

∴∠POQ=∠CMQ.

∵∠CMQ=2∠COQ,

∴∠COQ= ∠POQ=∠POC,

= ,OC平分∠AOB,結論①④正確;

∵∠AOB的度數(shù)未知,∠POQ和∠PQO互余,

∴∠POQ不一定等于∠PQO,

∴OP不一定等于PQ,結論③錯誤.

綜上所述:正確的結論有①②④.

所以答案是:C.

【考點精析】關于本題考查的圓周角定理,需要了解頂點在圓心上的角叫做圓心角;頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角;一條弧所對的圓周角等于它所對的圓心角的一半才能得出正確答案.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】計算題:
(1)計算:( ﹣1)0﹣(﹣ 2+ tan30°;
(2)解方程: + =1.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平面直角坐標系中,直線AB:y軸于點A(0,1),交x軸于點B.直線x=1AB于點D,交x軸于點E,P是直線x=1上一動點,且在點D的上方,設P(1,n).

(1)求直線AB的解析式和點B的坐標;

(2)△ABP的面積(用含n的代數(shù)式表示);

(3)SABP=2時,以PB為邊在第一象限作等腰直角三角形BPC,求出點C的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】爸爸想送小明一個書包和一輛自行車作為新年禮物,在甲、乙兩商場都發(fā)現(xiàn)同款的自行車單價相同,書包單價也相同,自行車和書包單價之和為452元,且自行車的單價比書包的單價4倍少8元.

(1)求自行車和書包單價各為多少元;

(2)新年來臨趕上商家促銷,乙商場所有商品打八五折(即8.5折)銷售,甲全場購物毎滿100元返購物券30元(即不足100元不返券,滿100元送30元購物券,滿200元送60元購物券),并可當場用于購物,購物券全場通用.但爸爸只帶了400元錢,如果他只在同一家商場購買看中的兩樣物品,在哪一家買更省錢?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】整式與方程

(1)先化簡,再求值:3x2y[2x2y3(2xyx2y)xy],其中x=﹣1,y=﹣2

(2)解方程:

4x3(2x)

3+

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個能被13整除的自然數(shù)我們稱為十三數(shù)”,“十三數(shù)的特征是:若把這個自然數(shù)的末三位與末三位以前的數(shù)字組成的數(shù)之差,如果能被13整除,那么這個自然數(shù)就一定能被13整除.例如:判斷383357能不能被13整除,這個數(shù)的末三位數(shù)字是357,末三位以前的數(shù)字組成的數(shù)是383,這兩個數(shù)的差是383﹣357=26,26能被13整除,因此383357十三數(shù)”.

(1)判斷3253254514是否為十三數(shù),請說明理由.

(2)若一個四位自然數(shù),千位數(shù)字和十位數(shù)字相同,百位數(shù)字與個位數(shù)字相同,則稱這個四位數(shù)為間同數(shù)”.

求證:任意一個四位間同數(shù)能被101整除.

若一個四位自然數(shù)既是十三數(shù),又是間同數(shù),求滿足條件的所有四位數(shù)的最大值與最小值之差.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC在平面直角坐標系中的位置如圖.A、B、C三點在格點上.

(1)作出ABC關于x軸對稱的A1B1C1,并寫出點C1的坐標;

(2)在y軸上找點D,使得AD+BD最小,作出點D并寫出點D的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,Rt△ABC中,∠C=90°,BC=3,點O在AB上,OB=2,以OB為半徑的⊙O與AC相切于點D,交BC于點E,求弦BE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在矩形ABCD中,F(xiàn)是DC上一點,AE平分∠BAF交BC于點E,且DE⊥AF,垂足為點M,BE=3,AE=2 ,則MF的長是

查看答案和解析>>

同步練習冊答案