【題目】完成下列證明:
如圖,已知DE⊥AC于點E,BC⊥AC于點C,F(xiàn)G⊥AB于點G,∠1=∠2,求證:CD⊥AB.

證明:∵DE⊥AC,BC⊥AC(已知),
∴DE∥),
∴∠2=(兩直線平行,內(nèi)錯角相等),
∵∠1=∠2,(已知),
∴∠1=),
∴GF∥CD(),
∵FG⊥AB(已知),
∴CD⊥AB.

【答案】BC;在同一平面內(nèi),垂直于同一直線的兩直線平行;∠BCD;∠BCD;等量代換;同位角相等,兩直線平行
【解析】證明:∵DE⊥AC,BC⊥AC(已知),

∴DE∥BC( 在同一平面內(nèi),垂直于同一直線的兩直線平行),

∴∠2=∠BCD(兩直線平行,內(nèi)錯角相等),

∵∠1=∠2,(已知),

∴∠1=∠BCD(等量代換),

∴GF∥CD(同位角相等,兩直線平行),

∵FG⊥AB(已知),

∴CD⊥AB,

所以答案是:1.BC;2在同一平面內(nèi),垂直于同一直線的兩直線平行;3.∠BCD;4.∠BCD;5.等量代換;6.同位角相等,兩直線平行.

【考點精析】解答此題的關(guān)鍵在于理解平行線的判定與性質(zhì)的相關(guān)知識,掌握由角的相等或互補(數(shù)量關(guān)系)的條件,得到兩條直線平行(位置關(guān)系)這是平行線的判定;由平行線(位置關(guān)系)得到有關(guān)角相等或互補(數(shù)量關(guān)系)的結(jié)論是平行線的性質(zhì).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】確定一個地點的位置,下列說法正確的是(

A. 偏東30°,1000 B. 西北方向

C. 距此500 D. 正南方向,距此600

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙O的內(nèi)接△ABC的外角∠ACE的平分線交⊙O于點D.DF⊥AC,垂足為F,DE⊥BC,垂足為E.給出下列4個結(jié)論:①CE=CF;②∠ACB=∠EDF;③DE是⊙O的切線;④.其中一定成立的是(

A.①②③ B.②③④ C.①③④ D.①②④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學擴建教學樓,測量地基時,量得地基長為2a m,寬為(2a﹣24)m,試用a表示地基的面積,并計算當a=25時地基的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在⊙O的內(nèi)接四邊形ABCD中,AB=3,AD=5,∠BAD=60°,點C為弧BD的中點,則AC的長是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)為常數(shù),且)的圖象都經(jīng)過點A(m,2).

(1)求點A的坐標及反比例函數(shù)的表達式;

(2)設(shè)一次函數(shù)的圖象與x軸交于點B,若點P是x軸上一點,且滿足ABP的面積是2,直接寫出點P的坐標

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x2﹣(m+2x+2m0

1)求證:不論m為何值,該方程總有兩個實數(shù)根;

2)若此方程的一個根是1,請求出方程的另一個根.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某物流公司要把3000噸貨物從M市運到W市.(每日的運輸量為固定值)
(1)從運輸開始,每天運輸?shù)呢浳飮崝?shù)y(單位:噸)與運輸時間x(單位:天)之間有怎樣的函數(shù)關(guān)系式?
(2)因受到沿線道路改擴建工程影響,實際每天的運輸量比原計劃少20%,以致推遲1天完成運輸任務(wù),求原計劃完成運輸任務(wù)的天數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列命題中,正確的的是(

A.矩形的對角線互相垂直B.菱形的對角線相等

C.矩形的四個角不定相等D.正方形的對角線互相垂直且相等

查看答案和解析>>

同步練習冊答案