【題目】在已知,口ABCD中∠ABC=90°,AB=4cm,BC=8cm,AC的垂直平分線EF分別交AD、BC于點(diǎn)E、F,垂足為O.
(1)如圖1,連接AF、CE.求證: 四邊形AFCE為菱形.
(2)如圖1,求AF的長(zhǎng).
(3)如圖2,動(dòng)點(diǎn)P、Q分別從A、C兩點(diǎn)同時(shí)出發(fā),沿△AFB和△CDE各邊勻速運(yùn)動(dòng)一周.即點(diǎn)P自A→F→B→A停止,點(diǎn)Q自C→D→E→C停止.在運(yùn)動(dòng)過程中, 點(diǎn)P的速度為每秒1cm,點(diǎn)Q的速度為每秒0.8cm,設(shè)運(yùn)動(dòng)時(shí)間為秒,若當(dāng)A、P、C、Q四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形時(shí),求t的值.
【答案】(1)見解析;(2)5cm;(3) 秒.
【解析】(1)根據(jù)全等推出OE=OF,得出平行四邊形AFCE,根據(jù)菱形判定推出即可;
(2)根據(jù)菱形性質(zhì)得出AF=CF,根據(jù)勾股定理得出方程,求出方程的解即可;
(3)分情況討論可知,當(dāng)P點(diǎn)在BF上、Q點(diǎn)在ED上時(shí),才能構(gòu)成平行四邊形,根據(jù)平行四邊形的性質(zhì)列出方程求解即可.
(1)證明:∵四邊形ABCD是平行四邊形,
∴AD∥BC,
∴∠CAD=∠ACB,∠AEF=∠CFE,
∵EF垂直平分AC,垂足為O,
∴OA=OC,
∴△AOE≌△COF,
∴OE=OF,
∴四邊形AFCE為平行四邊形
∵AC⊥EF
∴四邊形為菱形
(2)∵EF垂直平分AC
∴AF=CF
∴設(shè)AF=CF=xcm,則BF=(8﹣x)cm,
在Rt△ABF中,AB=4cm,由勾股定理得,
解得x=5,∴AF=5cm;
(3)∵ 顯然當(dāng)P點(diǎn)在AF上時(shí),Q點(diǎn)在CD上,此時(shí)A、C、P、Q四點(diǎn)不可能構(gòu)成平行四邊形;
同理P點(diǎn)在AB上時(shí),Q點(diǎn)在DE或CE上,也不能構(gòu)成平行四邊形,
因此只有當(dāng)P點(diǎn)在BF上、Q點(diǎn)在ED上時(shí),才能構(gòu)成平行四邊形,
∴以A、C、P、Q四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形時(shí),PC=QA,
∵點(diǎn)P的速度為每秒1cm,點(diǎn)Q的速度為每秒0.8cm,運(yùn)動(dòng)時(shí)間為t秒,
∴PC=t,QA=12﹣0.8t,∴t=12﹣0.8t,解得,
∴以A、C、P、Q四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形時(shí)秒
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A1(1,0),A2(1,1),A3(-1,1),A4(-1,-1),A5(2,-1),…,則點(diǎn)A2 019的坐標(biāo)為____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把下列各數(shù)分別填在相應(yīng)的集合里:
5, ,0, 3.14, ,2016,1.99, (6),
(1)正數(shù)集合:{ };
(2)負(fù)數(shù)集合:{ };
(3)整數(shù)集合;{ };
(4)分?jǐn)?shù)集合:{ }.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=10,點(diǎn)D是邊BC上一動(dòng)點(diǎn) (不與B,C重合),∠ADE=∠B=α,DE交AC于點(diǎn)E,且 .下列結(jié)論: ①△ADE∽△ACD;
②當(dāng)BD=6時(shí),△ABD與△DCE全等;
③△DCE為直角三角形時(shí),BD為8或 ;
④CD2=CECA.
其中正確的結(jié)論是(把你認(rèn)為正確結(jié)論的序號(hào)都填上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,數(shù)軸上點(diǎn)A表示的數(shù)為﹣2,點(diǎn)B表示的數(shù)為8,點(diǎn)P從點(diǎn)A出發(fā),以每秒3個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),同時(shí)點(diǎn)Q從點(diǎn)B出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度向左勻速運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒(t>0).
(1)填空:
①A、B兩點(diǎn)間的距離AB= ,線段AB的中點(diǎn)表示的數(shù)為 ;
②用含t的代數(shù)式表示:t秒后,點(diǎn)P表示的數(shù)為 ;點(diǎn)Q表示的數(shù)為 .
(2)求當(dāng)t為何值時(shí),PQ=AB;
(3)當(dāng)點(diǎn)P運(yùn)動(dòng)到點(diǎn)B的右側(cè)時(shí),PA的中點(diǎn)為M,N為PB的三等分點(diǎn)且靠近于P點(diǎn),求PM﹣BN的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“國(guó)際無煙日”之際,小敏同學(xué)就一批公眾對(duì)在餐廳吸煙所持的三種態(tài)度(徹底禁煙、建立吸煙室、其他)進(jìn)行了調(diào)查,并把調(diào)查結(jié)果繪制成如圖①,②的統(tǒng)計(jì)圖.請(qǐng)根據(jù)下面圖中的信息回答下列問題:
(1)被調(diào)查者中,不吸煙者中贊成徹底禁煙的人數(shù)有________人;
(2)本次抽樣調(diào)查的樣本容量為__________;
(3)被調(diào)查者中,希望建立吸煙室的人數(shù)有_________人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著人民生活水平的提高,購(gòu)買老年代步車的人越來越多.這些老年代步車卻成為交通安全的一大隱患.針對(duì)這種現(xiàn)象,某校數(shù)學(xué)興趣小組在《老年代步車現(xiàn)象的調(diào)查報(bào)告》中就“你認(rèn)為對(duì)老年代步車最有效的管理措施”隨機(jī)對(duì)某社區(qū)部分居民進(jìn)行了問卷調(diào)查,其中調(diào)查問卷設(shè)置以下選項(xiàng)(只選一項(xiàng)):
A:加強(qiáng)交通法規(guī)學(xué)習(xí);
B:實(shí)行牌照管理;
C:加大交通違法處罰力度;
D:納入機(jī)動(dòng)車管理;
E:分時(shí)間分路段限行
調(diào)查數(shù)據(jù)的部分統(tǒng)計(jì)結(jié)果如下表:
管理措施 | 回答人數(shù) | 百分比 |
A | 25 | 5% |
B | 100 | m |
C | 75 | 15% |
D | n | 35% |
E | 125 | 25% |
合計(jì) | a | 100% |
(1)根據(jù)上述統(tǒng)計(jì)表中的數(shù)據(jù)可得m=_____,n=_____,a=_____;
(2)在答題卡中,補(bǔ)全條形統(tǒng)計(jì)圖;
(3)該社區(qū)有居民2600人,根據(jù)上述調(diào)查結(jié)果,請(qǐng)你估計(jì)選擇“D:納入機(jī)動(dòng)車管理”的居民約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某林場(chǎng)計(jì)劃購(gòu)買甲、乙兩種樹苗共800株,甲種樹苗每株24元,乙種樹苗每株30元.甲、乙兩種樹苗的成活率分別為85%,90%.
(1)若購(gòu)買這兩種樹苗共用去21000元,則甲、乙兩種樹苗各購(gòu)買多少株?
(2)若要使這批樹苗的總成活率不低于88%,則甲種樹苗的數(shù)量應(yīng)滿足怎樣的條件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=BC=1,將Rt△ABC繞A點(diǎn)逆時(shí)針旋轉(zhuǎn)30°后得到Rt△ADE,點(diǎn)B經(jīng)過的路徑為 ,則圖中陰影部分的面積是 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com