【題目】如圖,已知,∠CAB=∠DAEACAD,增加下列條件:ABAE;BCEDC=∠D;B=∠E;1=∠2.其中能使△ABC≌△AED的條件有(  )

A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)

【答案】B

【解析】

根據(jù)已有的條件∠CAB=DAE,AC=AD,利用全等三角形的判定定理分別進(jìn)行分析即可.

解:∵∠CABDAE,ACAD,

∴①加上條件ABAE可利用SAS定理證明ABC≌△AED;

加上BCED不能證明ABC≌△AED;

加上CD可利用ASA證明ABC≌△AED;

加上BE可利用AAS證明ABC≌△AED;

加上12不能證明ABC≌△AED;

故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)、軸上,且,的面積為14.將沿軸平移得到,當(dāng)點(diǎn)中點(diǎn)時(shí),點(diǎn)恰好在軸上.

求:(1)點(diǎn)的坐標(biāo);

2的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(提高題) 如圖所示,ABC中,∠ACB=90°,ABC的平分線BDAC于點(diǎn)D,CHABH,且交BD于點(diǎn)F,DEABE,四邊形CDEF是菱形嗎?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】用列表法畫二次函數(shù)的圖象時(shí)先列一個(gè)表,當(dāng)表中對(duì)自變量x的值以相等間隔的值增加時(shí),函數(shù)y所對(duì)應(yīng)的值依次為:20、56、110、182、274380、506、650,其中有一個(gè)值不正確,這個(gè)不正確的值是( )

A. 506 B. 380 C. 274 D. 182

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2019412日,安慶“筑夢(mèng)號(hào)”自動(dòng)駕駛公開試乘體驗(yàn)正式啟動(dòng),讓安慶成為全國(guó)率先開通自動(dòng)駕駛的城市,智能、綠色出行的時(shí)代即將到來(lái).普通燃油車從A地到B地,所需油費(fèi)108元,而自動(dòng)駕駛的純電動(dòng)車所需電費(fèi)27元,已知每行駛l千米,普通燃油汽車所需的油費(fèi)比自動(dòng)的純電動(dòng)汽車所需的電費(fèi)多0.54元,求自動(dòng)駕駛的純電動(dòng)汽車每行駛1千米所需的電費(fèi).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】觀察下列等式,并探究

……

1)寫出第④個(gè)等式:______

2)某同學(xué)發(fā)現(xiàn),四個(gè)連續(xù)自然數(shù)的積加上1后,結(jié)果都將是某一個(gè)整數(shù)的平方.當(dāng)這四個(gè)數(shù)較大時(shí)可以進(jìn)行簡(jiǎn)便計(jì)算,如:

請(qǐng)你猜想寫出第n個(gè)等式,用含有n的代數(shù)式表示,并通過(guò)計(jì)算驗(yàn)證你的猜想.

3)任何實(shí)數(shù)的平方都是非負(fù)數(shù)(即),一個(gè)非負(fù)數(shù)與一個(gè)正數(shù)的和必定是一個(gè)正數(shù)(即時(shí),).根據(jù)以上的規(guī)律和方法試說(shuō)明:無(wú)論x為什么實(shí)數(shù),多項(xiàng)式的值永遠(yuǎn)都是正數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC中,AB=AC=12厘米,∠B=C,BC=8厘米,點(diǎn)DAB的中點(diǎn).如果點(diǎn)P在線段BC上以3厘米/秒的速度由B點(diǎn)向C點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段CA上由C點(diǎn)向A點(diǎn)運(yùn)動(dòng).若點(diǎn)Q的運(yùn)動(dòng)速度為_____厘米/秒,△BPD與△CQP全等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABO的直徑,弦CDAB于點(diǎn)E,點(diǎn)PO上,PBCD交于點(diǎn)F,PBCC.

(1)求證:CBPD

(2)PBC22.5°,O的半徑R2,求劣弧AC的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在我校舉行的小科技創(chuàng)新發(fā)明比賽中,共有60人獲獎(jiǎng),組委會(huì)原計(jì)劃按照一等獎(jiǎng)5人,二等獎(jiǎng)15人,三等獎(jiǎng)40人進(jìn)行獎(jiǎng)勵(lì).后來(lái)經(jīng)學(xué)校研究決定,在該項(xiàng)獎(jiǎng)勵(lì)總獎(jiǎng)金不變的情況下,各等級(jí)獲獎(jiǎng)人數(shù)實(shí)際調(diào)整為:一等獎(jiǎng)10人,二等獎(jiǎng)20人,三等獎(jiǎng)30人,調(diào)整后一等獎(jiǎng)每人獎(jiǎng)金降低80元,二等獎(jiǎng)每人獎(jiǎng)金降低50元,三等獎(jiǎng)每人獎(jiǎng)金降低30元,調(diào)整前二等獎(jiǎng)每人獎(jiǎng)金比三等獎(jiǎng)每人獎(jiǎng)金多70元,則調(diào)整后一等獎(jiǎng)每人獎(jiǎng)金比二等獎(jiǎng)每人獎(jiǎng)金多____元.

查看答案和解析>>

同步練習(xí)冊(cè)答案