如圖,BD是⊙O的直徑,點A、C在⊙O上,AB=AC=2數(shù)學(xué)公式,弦AD交BC于點E,且AD=6.
(1)求∠ABC的度數(shù)和線段BE的長;
(2)過點A作⊙O的切線,交DB的延長線于點F,求證:BF=BO.

解:(1)∵BD為直徑,
∴∠BAD=90°,
∵AD=6,AB=2,由勾股定理得:BD==4,
∴AB=BD,
∴∠D=30°,
∴∠C=∠D=30°,
∵AB=AC,
∴∠ABC=∠C=30°,
∵∠BAD=∠BAE=90°,∠D=∠ABE=30°,
∴△ABE∽△ADB,
=,
=
∴BE=4.

(2)證明:
連接OA,
∵∠D=30°,
∴∠AOB=2∠D=60°,
∵OA=OB,
∴△AOB是等邊三角形,
∴AB=OB,∠OAB=∠ABO=60°,
∵AF切⊙O于A,
∴∠OAF=90°,
∴∠FAB=90°-60°=30°,
∴∠F=∠ABO-∠FAB=60°-30°=30°=∠FAB,
∴FB=AB,
∵AB=BO,
∴BF=BO.
分析:(1)求出BD,得出BD=2AB,推出∠D=30°,即可求出∠ABC;證△ABE∽△ADB,即可求出BE;
(2)連接AO,得出等邊三角形ABO,推出AB=OB,∠OAB=∠ABO=60°,求出∠F=∠FAB,推出AB=BF,OB=AB,即可得出答案.
點評:本題考查了圓周角定理,相似三角形的性質(zhì)和判定,含30度角的直角三角形性質(zhì),勾股定理,等腰三角形性質(zhì),圓的切線性質(zhì)的應(yīng)用,主要考查學(xué)生綜合運用性質(zhì)進行推理和計算的能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,△ABC是一個邊長為2的等邊三角形,D、E都在直線BC上,并且∠DAE=120°
(1)設(shè)BD=x,CE=y,求y與x直間的函數(shù)關(guān)系式;
(2)在上題中一共有幾對相似三角形,分別指出來(不必證明)
(3)改變原題的條件為AB=AC=2,∠BAC=β,∠DAE=α,α、β之間要滿足什么樣的關(guān)系,能使(1)中y與x的關(guān)系式仍然成立?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•渝北區(qū)一模)如圖,等邊△ABC的邊AB與正方形DEFG的邊長均為2,且AB與DE在同一條直線上,開始時點B與點D重合,讓△ABC沿這條直線向右平移,直到點B與點E重合為止,設(shè)BD的長為x,△ABC與正方形DEFG重疊部分(圖中陰影部分)的面積為y,則y與x之間的函數(shù)關(guān)系的圖象大致是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

泰勒斯是古希臘哲學(xué)家,相傳他利用三角形全等的方法求出岸上一點到海中一艘船的距離.如圖,B是觀察點,船A在B的正前方,過B作AB的垂線,在垂線上截取任意長BD,C是BD的中點,觀察者從點D沿垂直于BD的DE方向走,直到點E、船A和點C在一條直線上,那么△ABC≌△EDC,從而量出DE的距離即為船離岸的距離AB,這里判定△ABC≌△EDC的方法是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年重慶市開縣西街中學(xué)中考數(shù)學(xué)一模試卷(解析版) 題型:選擇題

如圖,等邊△ABC的邊AB與正方形DEFG的邊長均為2,且AB與DE在同一條直線上,開始時點B與點D重合,讓△ABC沿這條直線向右平移,直到點B與點E重合為止,設(shè)BD的長為x,△ABC與正方形DEFG重疊部分(圖中陰影部分)的面積為y,則y與x之間的函數(shù)關(guān)系的圖象大致是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年黃岡教育陽江培訓(xùn)中心中考數(shù)學(xué)模擬試卷(5)(解析版) 題型:解答題

如圖,△ABC是一個邊長為2的等邊三角形,D、E都在直線BC上,并且∠DAE=120°
(1)設(shè)BD=x,CE=y,求y與x直間的函數(shù)關(guān)系式;
(2)在上題中一共有幾對相似三角形,分別指出來(不必證明)
(3)改變原題的條件為AB=AC=2,∠BAC=β,∠DAE=α,α、β之間要滿足什么樣的關(guān)系,能使(1)中y與x的關(guān)系式仍然成立?說明理由.

查看答案和解析>>

同步練習(xí)冊答案