己知關(guān)于x的方程(k2+2)x2+(2k-3)x+1=0,其中k為常數(shù),試分析此方程根的情況.

答案:
解析:

  因?yàn)?/FONT>k220,所以只要確定Δ的符號即可.

  ∵Δ=(2k3)24(k22)=-12k1,

  當(dāng)Δ<0時,即-12k10,k時,方程無實(shí)數(shù)根.

  當(dāng)Δ=0時,即-12k10k時,方程有兩個相等的實(shí)數(shù)根.

  當(dāng)Δ>0肘,即-12k10,k時,方程有兩個不相等的實(shí)數(shù)根.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

請閱讀下列材料:
問題:已知方程x2+x-1=0,求一個一元二次方程,使它的根分別是已知方程根的2倍.
解:設(shè)所求方程的根為y,則y=2x所以x=
y
2

把x=
y
2
代入已知方程,得(
y
2
2+
y
2
-1=0
化簡,得y2+2y-4=0
故所求方程為y2+2y-4=0.
這種利用方程根的代換求新方程的方法,我們稱為“換根法”.
請用閱讀村料提供的“換根法”求新方程(要求:把所求方程化為一般形式):
(1)已知方程x2+x-2=0,求一個一元二次方程,使它的根分別為己知方程根的相反數(shù),則所求方程為:
 

(2)己知關(guān)于x的一元二次方程ax2+bx+c=0有兩個不等于零的實(shí)數(shù)根,求一個一元二次方程,使它的根分別是己知方程根的倒數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年福建省龍巖市長汀縣新橋二中九年級(上)第一次月考數(shù)學(xué)試卷(解析版) 題型:解答題

請閱讀下列材料:
問題:已知方程x2+x-1=0,求一個一元二次方程,使它的根分別是已知方程根的2倍.
解:設(shè)所求方程的根為y,則y=2x所以x=
把x=代入已知方程,得(2+-1=0
化簡,得y2+2y-4=0
故所求方程為y2+2y-4=0.
這種利用方程根的代換求新方程的方法,我們稱為“換根法”.
請用閱讀村料提供的“換根法”求新方程(要求:把所求方程化為一般形式):
(1)已知方程x2+x-2=0,求一個一元二次方程,使它的根分別為己知方程根的相反數(shù),則所求方程為:______;
(2)己知關(guān)于x的一元二次方程ax2+bx+c=0有兩個不等于零的實(shí)數(shù)根,求一個一元二次方程,使它的根分別是己知方程根的倒數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年貴州省黔西南州中考數(shù)學(xué)試卷(解析版) 題型:解答題

請閱讀下列材料:
問題:已知方程x2+x-1=0,求一個一元二次方程,使它的根分別是已知方程根的2倍.
解:設(shè)所求方程的根為y,則y=2x所以x=
把x=代入已知方程,得(2+-1=0
化簡,得y2+2y-4=0
故所求方程為y2+2y-4=0.
這種利用方程根的代換求新方程的方法,我們稱為“換根法”.
請用閱讀村料提供的“換根法”求新方程(要求:把所求方程化為一般形式):
(1)已知方程x2+x-2=0,求一個一元二次方程,使它的根分別為己知方程根的相反數(shù),則所求方程為:______;
(2)己知關(guān)于x的一元二次方程ax2+bx+c=0有兩個不等于零的實(shí)數(shù)根,求一個一元二次方程,使它的根分別是己知方程根的倒數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年湖北省十堰市中考數(shù)學(xué)試卷(解析版) 題型:解答題

請閱讀下列材料:
問題:已知方程x2+x-1=0,求一個一元二次方程,使它的根分別是已知方程根的2倍.
解:設(shè)所求方程的根為y,則y=2x所以x=
把x=代入已知方程,得(2+-1=0
化簡,得y2+2y-4=0
故所求方程為y2+2y-4=0.
這種利用方程根的代換求新方程的方法,我們稱為“換根法”.
請用閱讀村料提供的“換根法”求新方程(要求:把所求方程化為一般形式):
(1)已知方程x2+x-2=0,求一個一元二次方程,使它的根分別為己知方程根的相反數(shù),則所求方程為:______;
(2)己知關(guān)于x的一元二次方程ax2+bx+c=0有兩個不等于零的實(shí)數(shù)根,求一個一元二次方程,使它的根分別是己知方程根的倒數(shù).

查看答案和解析>>

同步練習(xí)冊答案