【題目】如圖,已知在Rt△ABC中,∠ACB=90°,AC=3,BC=4,點P在斜邊AB上 (不與A、B重合),過P作PE⊥AC,PF⊥BC,垂足分別是E、F,連接EF.隨著P點在邊AB上位置的改變,EF的長度是否也會改變?若不變,請你求EF的長度;若有變化,請你求EF的變化范圍.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,圓 O 的半徑為 1,過點 A(2,0)的直線與圓 O 相切于點 B,與 y 軸相交于點 C.
(1)求 AB 的長;
(2)求直線 AB 的解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A,B在反比例函數(shù)的圖象上,點C,D在反比例函數(shù)的圖象上,AC//BD//y軸,已知點A,B的橫坐標分別為1,2,△OAC與△ABD的面積之和為,則的值為( )
A. 3 B. 4 C. 2 D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AD是⊙O的切線,切點為A,AB是⊙O的弦,過點B作BC∥AD,交⊙O于點C,連接AC,過點C作CD∥AB,交AD于點D,連接AO并延長交BC于點M,交過點C的直線于點P,且∠BCP=∠ACD.
(1)判斷直線PC與⊙O的位置關系,并說明理由.
(2)若AB=5,BC=10,求⊙O的半徑及PC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AD是邊BC上的中線,∠BAD=∠CAD,CE∥AD,CE交BA的延長線于點E,BC=8,AD=3.
(1)求CE的長;
(2)求證:△ABC為等腰三角形.
(3)求△ABC的外接圓圓心P與內(nèi)切圓圓心Q之間的距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD的對角線AC、BD交于點O,且DE∥AC,CE∥BD.
(1)求證:四邊形OCED是菱形;
(2)若∠BAC=30°,AC=4,求菱形OCED的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商家獨家銷售具有地方特色的某種商品,每件進價為40元.經(jīng)過市場調(diào)查,一周的銷售量y件與銷售單價x(x≥50)元/件的關系如下表:
(1)直接寫出y與x的函數(shù)關系式:
(2)設一周的銷售利潤為S元,請求出S與x的函數(shù)關系式,并確定當銷售單價在什么范圍內(nèi)變化時,一周的銷售利潤隨著銷售單價的增大而增大?
(3)雅安地震牽動億萬人民的心,商家決定將商品一周的銷售利潤全部寄往災區(qū),在商家購進該商品的貨款不超過10000元情況下,請你求出該商家最大捐款數(shù)額是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,OABC是一張放在平面直角坐標系中的矩形紙片,O為原點,點A在x軸的正半軸上,點C在y軸的正半軸上,OA=5,OC=4.在OC邊上取一點D,將紙片沿AD翻折,使點O落在BC邊上的點E處,邊AE上有一動點P(不與A,E重合)自A點沿AE方向向E點勻速運動,運動的速度為每秒1個單位長度,設運動的時間為t秒(0<t<5),過P點作ED的平行線交AD于點M,過點M作AE的平行線交DE于點N.
(1)直接寫出D,E兩點的坐標,D( ),E( ),直接判斷四邊形NMPE的形狀為 ;
(2)當t為何值時,四邊形NMPE是正方形?
(3)當t為何值時,以A,M,E為頂點的三角形為等腰三角形,并求出相應的時刻點M的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O是梯形ABCD的內(nèi)切圓,AB∥DC,E、M、F、N分別是邊AB、BC、CD、DA上的切點.
(1)求證:AB+CD=AD+BC
(2)求∠AOD的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com