【題目】如圖,在平面直角坐標系xOy中,拋物線y=ax2+bx+3的頂點為M(2,﹣1),交x軸于點A、B兩點,交y軸于點C,其中點B的坐標為(3,0).
(1)求拋物線的解析式;
(2)設(shè)經(jīng)過點C的直線與該拋物線的另一個點為D,且直線CD和直線CA關(guān)于直線CB對稱,求直線CD的解析式;
(3)在該拋物線的對稱軸上存在點P,滿足PM2+PB2+PC2=35,求點P的坐標;并直接寫出此時直線OP與該拋物線交點的個數(shù).
【答案】
(1)
解:將M(2,﹣1)、B(3,0)代入拋物線的解析式中,得:
,
解得 .
故拋物線的解析式:y=x2﹣4x+3.
(2)
解:由拋物線的解析式知:B(3,0)、C(0,3)、A(1,0);
則△OBC是等腰直角三角形,∠OBC=45°.
過B作BE⊥x軸,交直線CD于E(如下圖),
則∠EBC=∠ABC=45°;
由于直線CD和直線CA關(guān)于直線CB對稱,所以點A、E關(guān)于直線BC對稱,則BE=AB=2;
則E(3,2).
由于直線CD經(jīng)過點C(0,3),可設(shè)該直線的解析式為y=kx+3,代入E(3,2)后,得:
3k+3=2,k=﹣
故直線CD的解析式:y=﹣ x+3.
(3)
解:設(shè)P(2,m),已知M(2,﹣1)、B(3,0)、C(0,3),則:
PM2=(2﹣2)2+(m+1)2=m2+2m+1,PB2=(3﹣2)2+(0﹣m)2=m2+1,PC2=(0﹣2)2+(3﹣m)2=m2﹣6m+13;
已知:PM2+PB2+PC2=35,則:m2+2m+1+m2+1+m2﹣6m+13=35,化簡得:3m2﹣4m﹣20=0
解之得:m1=﹣2,m2= ;
則P1(2,﹣2)、P2(2, )
當點P坐標為(2, )時,由圖可知,直線OP與拋物線必有兩個交點;
當點P坐標為(2,﹣2)時,直線OP:y=﹣x,聯(lián)立拋物線的解析式有:
x2﹣4x+3=﹣x,即 x2﹣3x+3=0
△=(﹣3)2﹣4×3<0,
故該直線與拋物線沒有交點;
綜上,直線OP與拋物線有兩個交點.
【解析】(1)拋物線的解析式中只有兩個待定系數(shù),將已知的兩點坐標代入其中進行求解即可.(2)由C、B兩點的坐標不難判斷出OB=OC,即∠CBO=45°,那么若取BE⊥x軸交CD于E,結(jié)合“直線CD和直線CA關(guān)于直線CB對稱”可得出A、E關(guān)于直線BC對稱,結(jié)合點B的坐標以及AB的長即可得到點E的坐標,在明確C、E兩點坐標的情況下,直線CD的解析式即可由待定系數(shù)法求得.(3)先設(shè)出點P的坐標,而M、B、C三點坐標已知,即可得到PM2、PB2、PC2的表達式,結(jié)合題干的已知條件即可求出點P的坐標,從而進一步判斷出直線OP與拋物線的交點個數(shù).
【考點精析】根據(jù)題目的已知條件,利用二次函數(shù)的圖象和二次函數(shù)的性質(zhì)的相關(guān)知識可以得到問題的答案,需要掌握二次函數(shù)圖像關(guān)鍵點:1、開口方向2、對稱軸 3、頂點 4、與x軸交點 5、與y軸交點;增減性:當a>0時,對稱軸左邊,y隨x增大而減;對稱軸右邊,y隨x增大而增大;當a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減小.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AD>AB,將矩形ABCD折疊,使點C與點A重合,折痕為MN,連接CN.若△CDN的面積與△CMN的面積比為1:4,則 的值為( )
A.2
B.4
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等圓⊙O1和⊙O2相交于A、B兩點,⊙O1經(jīng)過⊙O2的圓心,順次連接A、O1、B、O2 .
(1)求證:四邊形AO1BO2是菱形;
(2)過直徑AC的端點C作⊙O1的切線CE交AB的延長線于E,連接CO2交AE于D,求證:CE=2O2D;
(3)在(2)的條件下,若△AO2D的面積為1,求△BO2D的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(10分)某地區(qū)為了鼓勵市民節(jié)約用水,計劃實行生活用水按階梯式水價計費,每月用水量不超過10噸(含10噸)時,每噸按基礎(chǔ)價收費;每月用水量超過10噸時,超過的部分每噸按調(diào)節(jié)價收費.例如,第一個月用水16噸,需交水費17.8元,第二個月用水20噸,需交水費23元.
(1)求每噸水的基礎(chǔ)價和調(diào)節(jié)價;
(2)設(shè)每月用水量為n噸,應(yīng)交水費為m元,寫出m與n之間的函數(shù)解析式;
(3)若某月用水12噸,應(yīng)交水費多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校有1500名學(xué)生參加首屆“我愛我們的課堂”為主題的圖片制作比賽,賽后隨機抽取部分參賽學(xué)生的成績進行整理并制作成圖表如圖:
分數(shù)段 | 頻數(shù) | 頻率 |
60≤x<70 | 40 | 0.40 |
70≤x<80 | 35 | b |
80≤x<90 | a | 0.15 |
90≤x<100 | 10 | 0.10 |
頻率分布統(tǒng)計表
請根據(jù)上述信息,解答下列問題:
(1)分別求出a、b的值;
(2)請補全頻數(shù)分布直方圖;
(3)如果將比賽成績80分以上(含80分)定為優(yōu)秀,那么優(yōu)秀率是多少?并且估算該校參賽學(xué)生獲得優(yōu)秀的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】崇左市江州區(qū)太平鎮(zhèn)壺城社區(qū)調(diào)查居民雙休日的學(xué)習(xí)狀況,采取了下列調(diào)查方式;a:從崇左高中、太平鎮(zhèn)中、太平小學(xué)三所學(xué)校中選取200名教師;b:從不同住宅樓(即江灣花園與萬鵬住宅樓)中隨機選取200名居民;c:選取所管轄區(qū)內(nèi)學(xué)校的200名在校學(xué)生.并將最合理的調(diào)查方式得到的數(shù)據(jù)制成扇形統(tǒng)計圖和部分數(shù)據(jù)的頻數(shù)分布直方圖.以下結(jié)論:①上述調(diào)查方式最合理的是b;②在這次調(diào)查的200名教師中,在家學(xué)習(xí)的有60人;③估計該社區(qū)2000名居民中雙休日學(xué)習(xí)時間不少于4小時的人數(shù)是1180人;④小明的叔叔住在該社區(qū),那么雙休日他去叔叔家時,正好叔叔不學(xué)習(xí)的概率是0.1.其中正確的結(jié)論是( )
A.①④
B.②④
C.①③④
D.①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知∠AOB=30°,P是OA上的一點,OP=24cm,以r為半徑作⊙P.
(1)若r=12cm,試判斷⊙P與OB位置關(guān)系;
(2)若⊙P與OB相離,試求出r需滿足的條件.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理解:已知兩直線,L1:y=k1x+b1,L2:y=k2x+b2,
若L1⊥L2,則有k1k2=﹣1,根據(jù)以上結(jié)論解答下列各題:
(1)已知直線y=2x+1與直線y=kx﹣1垂直,求k的值;
(2)若一條直線經(jīng)過A(2,3),且與y=﹣x+3垂直,求這條直線所對應(yīng)的一次函數(shù)的關(guān)系式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com