如圖,在平面直角坐標系中,四邊形OABC是直角梯形,BC∥OA,A(8,0),C(0,4),AB=5,BD⊥OA于D.現(xiàn)有一動點P從點A出發(fā),以每秒一個單位長的速度沿AO方向,經(jīng)O點再往OC方向移動,最后到達C點.設點P移動時間為t秒.
(1)求點B的坐標;
(2)當t為多少時,△ABP的面積等于13;
(3)當t為多少時,△ABP是等腰三角形.

解:(1)∵四邊形OABC是直角梯形,
∴∠AOC=90°.
∵BD⊥OA,
∴OC∥BD.
∵BC∥OA,
∴四邊形OABC是矩形,
∴OC=BD,BC=OD.
∵A(8,0),C(0,4),
∴OA=8,OC=BD=4.
∵AB=5,在Rt△ABD中,由勾股定理,得
AD=3,∴BC=OD=5,
∴B(5,4);

(2)當P點在OA上時,=13,
AP=6.5,t=6.5;
當P點在OC上時,PO=t-8,CP=4-t+8=12-t
∴(5+8)×4÷2-5×(12-t)÷2-(t-8)×8÷2=13
解得t=10.
故當t為6.5秒或10秒時,△ABP的面積等于13;

(3)若P點在OA上,當AP=AB=5,即t=5時,△ABP是等腰三角形
當PB=AB=5時,即t=6時,△ABP是等腰三角形
當PB=PA時,PD=t-3,PB=t,由勾股定理,得
t=時,△ABP是等腰三角形,
當P,C重合時,t=12,
故t=、5、6、12.
分析:(1)由已知條件可以得出△ADB是直角三角形,利用勾股定理求得AD,BD的值,從而求出B點的坐標.
(2)當點P移動t秒時,AP=t,由三角形的面積公式建立等量關系就可以求出t值.
(3)當AP=AB、PB=AB或PA=PB時根據(jù)等腰三角形的性質(zhì)建立等量關系可以求出其t值.
點評:本題考查了直角三角形的性質(zhì),矩形的判定及性質(zhì),點的坐標的確定,等腰三角形的判定及性質(zhì),三角形的面積的運用.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點P為x軸上的一個動點,但是點P不與點0、點A重合.連接CP,D點是線段AB上一點,連接PD.
(1)求點B的坐標;
(2)當∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標xoy中,以坐標原點O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(橫、縱坐標均為整數(shù))中任意選取一個點,其橫、縱坐標之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標中,等腰梯形ABCD的下底在x軸上,且B點坐標為(4,0),D點坐標為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標xOy中,已知點A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點,PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點P從點O出發(fā),在梯形OABC的邊上運動,路徑為O→A→B→C,到達點C時停止.作直線CP.
(1)求梯形OABC的面積;
(2)當直線CP把梯形OABC的面積分成相等的兩部分時,求直線CP的解析式;
(3)當△OCP是等腰三角形時,請寫出點P的坐標(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習冊答案