Rt△ABC與Rt△FED是兩塊全等的含30°、60°角的三角板,按如圖(一)所示拼在一起,CB與DE重合.
(1)求證:四邊形ABFC為平行四邊形;
(2)取BC中點(diǎn)O,將△ABC繞點(diǎn)O順時(shí)鐘方向旋轉(zhuǎn)到如圖(二)中△A′B′C′位置,直線B'C'與AB、CF分別相交于P、Q兩點(diǎn),猜想OQ、OP長(zhǎng)度的大小關(guān)系,并證明你的猜想;
(3)在(2)的條件下,指出當(dāng)旋轉(zhuǎn)角至少為多少度時(shí),四邊形PCQB為菱形?(不要求證明)
(1)證明:∵△ABC≌△FCB,(1分)
∴AB=CF,AC=BF.(2分)
∴四邊形ABFC為平行四邊形.(3分)
(用其它判定方法也可)

(2)OP=OQ,(4分)
理由如下:∵OC=OB,∠COQ=∠BOP,∠OCQ=∠PBO,
∴△COQ≌△BOP.(6分)
∴OQ=OP.(7分)
(用平行四邊形對(duì)稱性證明也可)

(3)90°.
理由:∵OP=OQ,OC=OB,
∴四邊形PCQB為平行四邊形,
∵BC⊥PQ,
∴四邊形PCQB為菱形.(8分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知菱形的周長(zhǎng)為20,一條對(duì)角線長(zhǎng)為6,則邊長(zhǎng)是______,它的面積是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知菱形的周長(zhǎng)為8
5
,面積為16,則這個(gè)菱形較短的對(duì)角線長(zhǎng)為(  )
A.4B.8C.4
5
D.10

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知菱形ABCD的周長(zhǎng)為20cm,∠A:∠ABC=2:1,則對(duì)角線AC=______cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,四邊形ABCD是邊長(zhǎng)為13cm的菱形,其中對(duì)角線BD長(zhǎng)10cm,則對(duì)角線AC長(zhǎng)為______cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在菱形ABCD中,AB=4,∠AND=60°,點(diǎn)E是AD邊的中點(diǎn),點(diǎn)M是AB邊上一動(dòng)點(diǎn)(不與點(diǎn)A重合),延長(zhǎng)ME交射線CD于點(diǎn)N,連接MD、AN.
(1)求證:四邊形AMDN是平行四邊形;
(2)填空:
①當(dāng)AM的值為______時(shí),四邊形AMDN是矩形;
②當(dāng)AM的值為______時(shí),四邊形AMDN是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在四邊形ABCD中,AB=CD,P、Q分別是AD、BC的中點(diǎn),M、N分別是對(duì)角線AC、BD的中點(diǎn),證明:PQ⊥MN.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在菱形ABCD在,AE⊥BC,E為垂足,且BE=CE,AB=2.求:
(1)∠BAD的度數(shù);
(2)對(duì)角線AC、BD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在一個(gè)四邊形ABCD中,依次連接各邊的中點(diǎn)得一菱形,則對(duì)角線AC與BD必須滿足( 。
A.垂直B.相等
C.互相平分D.互相垂直平分

查看答案和解析>>

同步練習(xí)冊(cè)答案