(2003•河北)高科技發(fā)展公司投資500萬元,成功研制出一種市場需求量較大的高科技替代產品,并投入資金1500萬元作為固定投資,已知生產每件產品的成本是40元.在銷售過程中發(fā)現(xiàn):當銷售單價定為100元時,年銷售量為20萬件;銷售單價每增加10元,年銷售量將減少1萬件,設銷售單價為x(元),年銷售量為y(萬件),年獲利(年獲利=年銷售額一生產成本-投資)為z(萬元).
(1)試寫出y與x之間的函數關系式(不寫x的取值范圍);
(2)試寫出z與x之間的函數關系式(不寫x的取值范圍);
(3)計算銷售單價為160元時的年獲利,并說明同樣的年獲利,銷售單價還可定為多少元?相應的年銷售量分別為多少萬件?
(4)公司計劃,在第一年按年獲利最大確定銷售單價進行銷售;到第二年年底獲利不低于1130萬元,請借助函數的大致圖象說明:第二年的銷售單價x(元)應確定在什么范圍內?
【答案】
分析:(1)依題意當銷售單價定為x元時,年銷售量減少
(x-100),則易求y與x之間的函數關系式.
(2)由題意易得Z與x之間的函數關系.
(3)當x=160時則可推出x
2-340x+28800=0,解得x的值.在分別把x的兩個值代入y與x的函數關系式即可.
(4)把z與x的關系式化簡,得出當x=170時,z取最大值.
解答:解:(1)依題意知,當銷售單價定為x元時,年銷售量減少
(x-100)萬件,
∴y=20-
(x-100)=-
x+30,
即y與x之間的函數關系式是y=-
x+30.
(2)由題意得:
z=(30-
x)(x-40)-500-1500=-
x
2+34x-3200,
即z與x之間的函數關系是z=-
x
2+34x-3200.
(3)∵當x=160時,z=--
×160
2+34×160-3200=-320
∴-320=-
x
2+34x-3200,
整理,得x
2-340x+28800=0,
解得x
1=160,x
2=180.
即同樣的年獲利,銷售單價還可以定為180元,
當x=160時,y=-
×160+30=14;
當x=180時,y=-
×180+30=12.
即相應的年銷售量分別為14萬件和12萬件.
(4)∵z=-
x
2+34x-3200=-
(x-170)
2-310.
∴當x=170時,z取最大值,為-310,
即當銷售單價為170元,年獲利最大,并且第一年年底公司還差310萬元就可收回全部投資.
第二年的銷售單價定為x元時,年獲利為:
z=(30-
x)(x-40)-310=-
x
2+34x-1510.
當z=1130時,即1130=-
x
2+34x-1510,
整理得x
2-340x+26400=0,
解得:x
1=120,x
2=220.
函數z=-
x
2+34x-1510的圖象大致如圖所示,
由圖象可以看出:當120≤x≤220時,z≥1130.
故第二年的銷售單價應確定在不低于120元且不高于220元的范圍內.
點評:本題主要考查的是學生的作圖能力以及二次函數的實際應用,難度偏難.