分析 根據(jù)角平分線的定義求出∠ADC=2∠1,∠BCD=2∠2,然后根據(jù)∠DEC=90°得出∠1+∠2=90°,即可求出∠ADC+∠BCD=180°,再根據(jù)同旁內(nèi)角互補(bǔ),兩直線平行求出AD∥BC,然后根據(jù)兩直線平行,同旁內(nèi)角互補(bǔ)求出∠B=90°,然后即可得解.
解答 解:BC⊥AB.理由如下:
∵DE平分∠ADC,CE平分∠BCD,
∴∠ADC=2∠1,∠BCD=2∠2,
∵∠DEC=90°,
∴∠1+∠2=90°,
∴∠ADC+∠BCD=180°,
∴AD∥BC,
∵DA⊥AB,
∴∠A=90°,
∴∠B=180°-∠A=180°-90°=90°,
∴BC⊥AB.
點(diǎn)評(píng) 本題考查了平行線的判定與性質(zhì),角平分線的定義,熟記性質(zhì)與判定方法求出AD∥BC是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 16 | B. | 16$\sqrt{2}$ | C. | 16$\sqrt{3}$ | D. | 8$\sqrt{3}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | (4,5) | B. | (4,-5) | C. | (5,4) | D. | (5,-4) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com