【題目】正方形網(wǎng)格中(網(wǎng)格中的每個小正方形邊長是1),△ABC的頂點均在格點上,請在所給的直角坐標(biāo)系中解答下列問題:
(1)畫出△ABC關(guān)于點O成中心對稱的圖形△A1B1C1;
(2) 將△A1B1C1沿y軸正方向平移5個單位得到△A2B2C2 ,畫出△A2B2C2;
(3)若△ABC與△A2B2C2 繞點P旋轉(zhuǎn)重合,則點P的坐標(biāo)為 .
【答案】(1)見解析;(2)見解析;(3)(0,2.5)
【解析】
(1)直接利用關(guān)于原點對稱點的性質(zhì)得出對應(yīng)點位置進而得出答案;
(2)根據(jù)平移的性質(zhì)得出得出對應(yīng)點位置進而得出答案;
(3)根據(jù)旋轉(zhuǎn)的性質(zhì)可知點P是AA2的中點,由線段的中點坐標(biāo)公式求出即可.
解:(1)如圖所示△A1B1C1,即為所求;
(2)如圖所示△A2B2C2就是所求的三角形;
(3)由圖象可知:A(-1,0),A2(1,5),
所以P點的橫坐標(biāo)為:(-1+1) ÷2=0,縱坐標(biāo)為:(0+5) ÷2=2.5
∴P點的坐標(biāo)為:(0,2.5)
科目:初中數(shù)學(xué) 來源: 題型:
【題目】填空并完成推理過程.
如圖,E點為DF上的點,B點為AC上的點,∠1=∠2,∠C=∠D,試說明:AC∥DF.
證明:∵∠1=∠2(已知)
∠1=∠3(對頂角相等)
∴∠2=∠3( )
∴____∥______( )
∴∠C=∠ABD( )
又∵∠C=∠D(已知)
∴∠D=∠ABD(等量代換)
∴AC∥DF( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面的材料并填空:
①(1﹣)(1+)=1﹣,反過來,得1﹣=(1﹣)(1+)=×;
②(1﹣)(1+)=1﹣,反過來,得1﹣=(1﹣)(1+)= × ;
③(1﹣)(1+)=1﹣,反過來,得1﹣= = ;
利用上面的材料中的方法和結(jié)論計算下題:
(1﹣)(1﹣)(1﹣)……(1﹣)(1﹣)(1﹣).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】燃放煙花爆竹是中國春節(jié)的傳統(tǒng)民俗,可注重低碳、環(huán)保、健康的市民讓今年的煙花爆竹遇冷.在江北區(qū)北濱路一煙花爆竹銷售點了解到,某種品牌的煙花2013年除夕每箱進價100元,售價250元,銷售量40箱 .而2014年除夕當(dāng)天和去年當(dāng)天相比,該店的銷售量下降了%(為正整數(shù)),每箱售價提高了%,成本增加了50%,其銷售利潤僅為去年當(dāng)天利潤的50%.則的值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,O為坐標(biāo)原點,四邊形OABC為矩形,A(10,0),C(0,4),點D是OA的中點,動點P在線段BC上以每秒2個單位長的速度由點C向B 運動.設(shè) 動點P的運動時間為t秒
(1)當(dāng)t為何值時,四邊形PODB是平行四邊形?
(2)在直線CB上是否存在一點Q,使得O、D、Q、P四點為頂點的四邊形是菱形?若存在,求t的值,并求出Q點的坐標(biāo);若不存在,請說明理由。
(3) 在線段PB上有一點M,且PM=5,當(dāng)P運動 秒時,四邊形OAMP的周長最小, 并畫圖標(biāo)出點M的位置。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:點P是四邊形ABCD外接圓⊙O上的任意一點,且不與四邊形頂點重合,若AD是⊙O的直徑,AB=BC=CD,連接PA,PB,PC,若PA= ,求點A到PB和PC的距離之和AE+AF是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=8,BC=16,將矩形ABCD沿EF折疊,使點C與點A重合,則折痕EF的長為( )
A.6 B.12 C.2 D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司為了擴大經(jīng)營,決定購進6臺機器用于生產(chǎn)某活塞.現(xiàn)有甲、乙兩種機器供選擇,其中每種機器的價格和每臺機器日生產(chǎn)活塞的數(shù)量如下表所示.經(jīng)過預(yù)算,本次購買機器所耗資金不能超過34萬元.
甲 | 乙 | |
價格(萬元/臺) | 7 | 5 |
每臺日產(chǎn)量(個) | 100 | 60 |
(1)按該公司要求可以有幾種購買方案?
(2)如果該公司購進的6臺機器的日生產(chǎn)能力不能低于380個,那么為了節(jié)約資金應(yīng)選擇什么樣的購買方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某水果店出售某種水果,已知該水果的進價為6元/千克,若以9元/千克的價格銷售,則每天可售出200千克;若以11元/千克的價格銷售,則每天可售出120千克.通過調(diào)查驗證,我發(fā)現(xiàn)每天的銷售量y(千克)與銷售單價x(元)之間存在一次函數(shù)關(guān)系.
(1)求y(千克)與x(元)(x>0)的函數(shù)關(guān)系式;
(2)當(dāng)銷售單價為何值時,該水果店銷售這種水果每天獲取的利潤達到280元?
(3)水果店在進貨成本不超過720元時,銷售單價定為多少元可獲得最大利潤?最大利潤是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com