已知反比例函數(shù)y=的圖象與二次函數(shù)y=ax2+x-1的圖象相交于點(diǎn)(2,2)
(1)求a和k的值;
(2)反比例函數(shù)的圖象是否經(jīng)過(guò)二次函數(shù)圖象的頂點(diǎn),為什么?
(1),k=4;(2)經(jīng)過(guò)

試題分析:(1)由兩個(gè)函數(shù)的圖象相交于點(diǎn)(2,2)根據(jù)待定系數(shù)法求解即可;
(2)先求出二次函數(shù)圖像的頂點(diǎn)坐標(biāo),再代入反比例函數(shù)的解析式即可作出判斷.
(1)因?yàn)槎魏瘮?shù)與反比例函數(shù)交于點(diǎn)(2,2)
所以2=4a+2-1,解得
所以k=4;
(2)反比函數(shù)的圖像經(jīng)過(guò)二次函數(shù)圖像的頂點(diǎn)
由(1)知,二次函數(shù)和反比例函數(shù)的關(guān)系式分別是
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408230257486321488.png" style="vertical-align:middle;" /> 
所以二次函數(shù)圖像的頂點(diǎn)坐標(biāo)是(-2,-2)
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823025748648266.png" style="vertical-align:middle;" />=-2時(shí),所以反比例函數(shù)圖像經(jīng)過(guò)二次函數(shù)圖像的頂點(diǎn).
點(diǎn)評(píng):二次函數(shù)的性質(zhì)是初中數(shù)學(xué)的重點(diǎn),貫穿于整個(gè)初中數(shù)學(xué)的學(xué)習(xí),是中考中比較常見(jiàn)的知識(shí)點(diǎn),一般難度不大,需熟練掌握.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,拋物線(xiàn)經(jīng)過(guò)△ABC的三個(gè)頂點(diǎn),點(diǎn)A坐標(biāo)為(0,3),點(diǎn)B坐標(biāo)為(2,3),點(diǎn)C在x軸的正半軸上.
(1)求該拋物線(xiàn)的函數(shù)關(guān)系表達(dá)式及點(diǎn)C的坐標(biāo);
(2)點(diǎn)E為線(xiàn)段OC上一動(dòng)點(diǎn),以O(shè)E為邊在第一象限內(nèi)作正方形OEFG,當(dāng)正方形的頂點(diǎn)F恰好落在線(xiàn)段AC上時(shí),求線(xiàn)段OE的長(zhǎng);
(3)將(2)中的正方形OEFG沿OC向右平移,記平移中的正方形OEFG為正方形DEFG,當(dāng)點(diǎn)E和點(diǎn)C重合時(shí)停止運(yùn)動(dòng).設(shè)平移的距離為t,正方形DEFG的邊EF與AC交于點(diǎn)M,DG所在的直線(xiàn)與AC交于點(diǎn)N,連接DM,是否存在這樣的t,使△DMN是等腰三角形?若存在,求出t的值;若不存在,請(qǐng)說(shuō)明理由;
(4)在上述平移過(guò)程中,當(dāng)正方形DEFG與△ABC的重疊部分為五邊形時(shí),請(qǐng)直接寫(xiě)出重疊部分的面積S與平移距離t的函數(shù)關(guān)系式及自變量t的取值范圍;并求出當(dāng)t為何值時(shí),S有最大值,最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在直角坐標(biāo)平面xOy中,拋物線(xiàn)C1的頂點(diǎn)為A(-1,4),且過(guò)點(diǎn)B(-3,0)

(1)寫(xiě)出拋物線(xiàn)C1與x軸的另一個(gè)交點(diǎn)M的坐標(biāo);
(2)將拋物線(xiàn)C1向右平移2個(gè)單位得拋物線(xiàn)C2,求拋物線(xiàn)C2的解析式;
(3)寫(xiě)出陰影部分的面積S.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖象與 軸交于A(,0),B(2,0),且與軸交于點(diǎn)C.


(1)求該拋物線(xiàn)的解析式,并判斷△ABC的形狀;
(2)點(diǎn)P是x軸下方的拋物線(xiàn)上一動(dòng)點(diǎn), 連接PO,PC,
并把△POC沿CO翻折,得到四邊形,求出使四邊形為菱形的點(diǎn)P的坐標(biāo);
(3) 在此拋物線(xiàn)上是否存在點(diǎn)Q,使得以A,C,B,Q四點(diǎn)為頂點(diǎn)的四邊形是直角梯形?若存在, 求出Q點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知二次函數(shù) (a、m為常數(shù),且a¹0)。
(1)求證:不論a與m為何值,該函數(shù)的圖像與x軸總有兩個(gè)公共點(diǎn);
(2)設(shè)該函數(shù)的圖像的頂點(diǎn)為C,與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)D。
①當(dāng)△ABC的面積等于1時(shí),求a的值:
②當(dāng)△ABC的面積與△ABD的面積相等時(shí),求m的值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知二次函數(shù)中,其函數(shù)與自變量之間的部分對(duì)應(yīng)值如下表所示:
x
……
0
1
2
3
4
5
……
y
……
4
1
0
1
4
9
……
(1)當(dāng)x=-1時(shí),y的值為      ;
(2)點(diǎn)A(,)、B(,)在該函數(shù)的圖象上,則當(dāng)時(shí),的大小關(guān)系是      
(3)若將此圖象沿x軸向右平移3個(gè)單位,請(qǐng)寫(xiě)出平移后圖象所對(duì)應(yīng)的函數(shù)關(guān)系式:      
(4)設(shè)點(diǎn)P1(m,y1)、P2(m+1,y2)、P3(m+2,y3)都在二次函數(shù)的圖象上,問(wèn):當(dāng)m<-3時(shí),y1、y2、y3的值一定能作為同一個(gè)三角形三邊的長(zhǎng)嗎?為什么?=】

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在△ABC中,∠BAC=90°,AB=AC=6,D為BC的中點(diǎn).

(1)若E、F分別是AB、AC上的點(diǎn),且AE=CF,求證:△AED≌△CFD;
(2)當(dāng)點(diǎn)F、E分別從C、A兩點(diǎn)同時(shí)出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿CA、AB運(yùn)動(dòng),到點(diǎn)A、B時(shí)停止;設(shè)△DEF的面積為y,F(xiàn)點(diǎn)運(yùn)動(dòng)的時(shí)間為x,求y與x的函數(shù)關(guān)系式;
(3)在(2)的條件下,點(diǎn)F、E分別沿CA、AB的延長(zhǎng)線(xiàn)繼續(xù)運(yùn)動(dòng),求此時(shí)y與x的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

二次函數(shù)的圖象如圖所示,則一次函數(shù)的圖象不經(jīng)過(guò)(   ).
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,拋物線(xiàn)與直線(xiàn)AB交于點(diǎn)A(-1,0),B(4,).點(diǎn)D是拋物線(xiàn)A,B兩點(diǎn)間部分上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)A,B重合),直線(xiàn)CD與y軸平行,交直線(xiàn)AB于點(diǎn)C,連接AD,BD.

(1)求拋物線(xiàn)的解析式;
(2)設(shè)點(diǎn)D的橫坐標(biāo)為m,則用m的代數(shù)式表示線(xiàn)段DC的長(zhǎng);
(3)在(2)的條件下,若△ADB的面積為S,求S關(guān)于m的函數(shù)關(guān)系式,并求出當(dāng)S取最大值時(shí)的點(diǎn)C的坐標(biāo);
(4)當(dāng)點(diǎn)D為拋物線(xiàn)的頂點(diǎn)時(shí),若點(diǎn)P是拋物線(xiàn)上的動(dòng)點(diǎn),點(diǎn)Q是直線(xiàn)AB上的動(dòng)點(diǎn),判斷有幾個(gè)位置能使以點(diǎn)P,Q,C,D為頂點(diǎn)的四邊形為平行四邊形,直接寫(xiě)出相應(yīng)的點(diǎn)Q的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案