已知:拋物線y=x+bx+c的頂點D在直線y=-4x上,且與x軸的交點A(-1,0),B,交y軸于點C,頂點為D.
(1) 求拋物線的解析式及頂點D的坐標.
(2)試判斷點C與以BD為直徑的⊙M的位置關系.
(3)若點P的坐標是(a,0),是否存在a,使得直線PC是⊙M的切線?若存在,求出a的值,若不存在,請說明理由.
(1) y=x-2x-3,頂點D(1,-4) (2) 點C在⊙M上(3) 存在,-3/2
【解析】⑴y=x-2x-3,頂點D(1,-4),
⑵∵拋物線y=x-2x-3與x軸的校點為B(3,0)
∴BD中點M為(2,-2),
∵BD=,CM=,
∴BD=2CM ,
∴點C在⊙M上。
⑶存在。
過點M作MN⊥y軸于N點,
則MN=2,NC=1.
當PC與⊙M相切時,
∠MCP=∠COB=90°,
又∠AQC=∠CQP,
∴△QAC∽△QCP
∴∠CPO=∠MCO,
∴tan∠MCO=,tan∠CPO=,
∴OP=
(1)首先求出拋物線的項點表達式,并把它代入直線方程中,然后把A點坐標代拋物線方程中,聯(lián)立解出b、c的值,從而得出拋物線的解析式,再求出拋物線與直線的交點D的坐標;
(2)先求出BD和CM的值,然后根據BD=2CM ,得出點C在⊙M上;
(3)存在.過點M作MN⊥y軸于N點,由PC與⊙M相切,得出△QAC∽△QCP,得出∠CPO=∠MCO,從而求OP的長度,得出a的值。
科目:初中數學 來源: 題型:
2 |
2 |
2 |
2 |
2 |
2 |
查看答案和解析>>
科目:初中數學 來源: 題型:
查看答案和解析>>
科目:初中數學 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com