【題目】(1)如圖1,在正方形ABCD中,E、F分別是邊BC、CD上的點(diǎn),且∠EAF=45°,把△ADF繞著點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得到△ABG,請直接寫出圖中所有的全等三角形;
(2)在四邊形ABCD中,AB=AD,∠B=∠D=90°.
①如圖2,若E、F分別是邊BC、CD上的點(diǎn),且2∠EAF=∠BAD,求證:EF=BE+DF;
②若E、F分別是邊BC、CD延長線上的點(diǎn),且2∠EAF=∠BAD,①中的結(jié)論是否仍然成立?請說明理由
【答案】(1)△ADF≌△ABG、△AEF≌△AEG;(2)①證明見解析;②不成立;理由見解析;
【解析】
(1)由旋轉(zhuǎn)的性質(zhì)易得△ADF≌△ABG、△AEF≌△AEG;
(2)①如圖,將△ADF繞著點(diǎn)A順時(shí)針旋轉(zhuǎn),使AD與AB重合,易證△ADF≌△ABG,故∠DAF=∠BAG,AF=AG,DF=BG,由2∠EAF=∠BAD得∠EAF=∠EAG,從而得△AEF≌△AEG,易得證;
②不成立.如圖,將△ADF繞著點(diǎn)A順時(shí)針旋轉(zhuǎn),使AD與AB重合,得△ABH,可證得△AEF≌△AEH,從而得出EF=BE-DF.
(1)△ADF≌△ABG、△AEF≌△AEG;
(2)①如圖,將△ADF繞著點(diǎn)A順時(shí)針旋轉(zhuǎn),使AD與AB重合,得△ABG,
∵AB=AD,∠ABC=∠D=,
∴∠ABC+∠ABG=即∠GBC=,
易得△ADF≌△ABG,
∴∠DAF=∠BAG,AF=AG,DF=BG,
∵2∠EAF=∠BAD,
∴∠EAF=∠BAE+∠DAF=∠BAE+∠BAG=∠EAG,
∵AE=AE,
∴△AEF≌△AEG,
∴EF=EG=BE+BG=BE+DF,
即EF=BE+DF.
②不成立
理由如下:如圖,將△ADF繞著點(diǎn)A順時(shí)針旋轉(zhuǎn),使AD與AB重合,得△ABH,
∵AB=AD,∠B=∠ADC=∠ADF=
∴點(diǎn)H在BC上,易得AF=AH,BH=DF,∠1=∠2
∴∠EAF=∠EAD+∠1=∠EAD+∠2,
∵2∠EAF=∠BAD=∠EAD+∠2+∠EAH,
∴∠EAF=∠EAH,
又∵AE=AE,
∴△AEF≌△AEH,
∴EF=EH=BE-BH=BE-DF,即EF=BE-DF,
∴①中的結(jié)論不成立.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AC=BC,∠ACB=90°,D是AB的中點(diǎn),點(diǎn)E是AB邊上一點(diǎn).
(1)BF⊥CE于點(diǎn)F,交CD于點(diǎn)G(如圖①).求證:AE=CG;
(2)AH⊥CE,垂足為H,交CD的延長線于點(diǎn)M(如圖②),找出圖中與BE相等的線段,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,∠A=∠C,點(diǎn)P在邊AB上.
(1)判斷四邊形ABCD的形狀并加以證明;
(2)若AB=AD,以過點(diǎn)P的直線為軸,將四邊形ABCD折疊,使點(diǎn)B、C分別落在點(diǎn)B′、C′上,且B′C′經(jīng)過點(diǎn)D,折痕與四邊形的另一交點(diǎn)為Q.
①在圖2中作出四邊形PB′C′Q(保留作圖痕跡,不必說明作法和理由);
②如果∠C=60°,那么 為何值時(shí),B′P⊥AB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=6,BC=8,點(diǎn)F在邊AC上,點(diǎn)E為邊BC上的動點(diǎn),將△CEF沿直線EF翻折,點(diǎn)C落在點(diǎn)P處,若點(diǎn)P能落在線段AB上,則線段CF長的最小值是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中有三點(diǎn)A(a,0),B(b,0),C(1,3),且a,b滿足|3b+a﹣2|+=0
(1)求A,B的坐標(biāo);
(2)在x負(fù)半軸上有一點(diǎn)D,使S△DOC=S△ABC,求點(diǎn)D坐標(biāo):
(3)在坐標(biāo)軸上是否還存在這樣的點(diǎn)D,使S△DOC=S△ABC仍然成立?若存在直接寫出點(diǎn)D的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】李老師家距學(xué)校1900米,某天他步行去上班,走到路程的一半時(shí)發(fā)現(xiàn)忘帶手機(jī),此時(shí)離上班時(shí)間還有23分鐘,于是他立刻步行回家取手機(jī),隨后騎電瓶車返回學(xué)校.已知李老師騎電瓶車到學(xué)校比他步行到學(xué)校少用20分鐘,且騎電瓶車的平均速度是步行速度的5倍,李老師到家開門、取手機(jī)、啟動電瓶車等共用4分鐘.
(1)求李老師步行的平均速度;
(2)請你判斷李老師能否按時(shí)上班,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰梯形ABCD中,AD∥BC,CA平分∠BCD,∠B=60°,若AD=3,則梯形ABCD的周長為( )
A.12
B.15
C.12
D.15
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A,B的坐標(biāo)分別為(-1,0),(3,0),現(xiàn)同時(shí)將點(diǎn)A,B分別向上平移2個(gè)單位,再向右平移1個(gè)單位,分別得到點(diǎn)A,B的對應(yīng)點(diǎn)C,D,連接AC,BD,CD.
(1)求點(diǎn)C,D的坐標(biāo)及平行四邊形ABDC的面積.
(2)在y軸上是否存在一點(diǎn)P,連接PA,PB,使=2,若存在這樣一點(diǎn),求出點(diǎn)P的坐標(biāo),若不存在,試說明理由.
(3)點(diǎn)P是四邊形ABCD邊上的點(diǎn),若△OPC為等腰三角形時(shí),直接寫出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一個(gè)直角三角形紙片OAB,其中∠AOB=90°,OA=2,OB=4.如圖,將該紙片放置在平面直角坐標(biāo)系中,折疊該紙片,折痕與邊OB交于點(diǎn)C,與邊AB交于點(diǎn)D.
(1)若折疊后使點(diǎn)B與點(diǎn)A重合,求點(diǎn)C的坐標(biāo).
(2)若折疊后點(diǎn)B落在邊OA上的點(diǎn)為B′,是否存在點(diǎn)B′,使得四邊形BCB′D是菱形?若存在,請說明理由并求出菱形的邊長;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com