【題目】如圖,直角梯形ABCO的兩邊OA,OC在坐標(biāo)軸的正半軸上,BC∥x軸,OA=OC=4,以直線x=1為對(duì)稱軸的拋物線過A,B,C三點(diǎn).
(1)求該拋物線的函數(shù)解析式;
(2)已知直線l的解析式為y=x+m,它與x軸交于點(diǎn)G,在梯形ABCO的一邊上取點(diǎn)P.
①當(dāng)m=0時(shí),如圖1,點(diǎn)P是拋物線對(duì)稱軸與BC的交點(diǎn),過點(diǎn)P作PH⊥直線l于點(diǎn)H,連結(jié)OP,試求△OPH的面積;
②當(dāng)m=﹣3時(shí),過點(diǎn)P分別作x軸、直線l的垂線,垂足為點(diǎn)E,F(xiàn).是否存在這樣的點(diǎn)P,使以P,E,F(xiàn)為頂點(diǎn)的三角形是等腰三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
【答案】
(1)
解:由題意得:A(4,0),C(0,4),對(duì)稱軸為x=1.
設(shè)拋物線的解析式為y=ax2+bx+c,則有:
,
解得 .
∴拋物線的函數(shù)解析式為:y=﹣ x2+x+4
(2)
解:①當(dāng)m=0時(shí),直線l:y=x.
∵拋物線對(duì)稱軸為x=1,
∴CP=1.
如答圖1,延長(zhǎng)HP交y軸于點(diǎn)M,則△OMH、△CMP均為等腰直角三角形.
∴CM=CP=1,
∴OM=OC+CM=5.
S△OPH=S△OMH﹣S△OMP= ( OM)2﹣ OMCP= ×( ×5)2﹣ ×5×1= ﹣ = ,
∴S△OPH= .
②當(dāng)m=﹣3時(shí),直線l:y=x﹣3.
設(shè)直線l與x軸、y軸交于點(diǎn)G、點(diǎn)D,則G(3,0),D(0,﹣3).
假設(shè)存在滿足條件的點(diǎn)P.
(a)當(dāng)點(diǎn)P在OC邊上時(shí),如答圖2﹣1所示,此時(shí)點(diǎn)E與點(diǎn)O重合.
設(shè)PE=a(0<a≤4),
則PD=3+a,PF= PD= (3+a).
過點(diǎn)F作FN⊥y軸于點(diǎn)N,則FN=PN= PF,∴EN=|PN﹣PE|=| PF﹣PE|.
在Rt△EFN中,由勾股定理得:EF= = .
若PE=PF,則:a= (3+a),解得a=3( +1)>4,故此種情形不存在;
若PF=EF,則:PF= ,整理得PE= PF,即a=3+a,不成立,故此種情形不存在;
若PE=EF,則:PE= ,整理得PF= PE,即 (3+a)= a,解得a=3.
∴P1(0,3).
(b)當(dāng)點(diǎn)P在BC邊上時(shí),如答圖2﹣2所示,此時(shí)PE=4.
若PE=PF,則點(diǎn)P為∠OGD的角平分線與BC的交點(diǎn),有GE=GF,過點(diǎn)F分別作FH⊥PE于點(diǎn)H,F(xiàn)K⊥x軸于點(diǎn)K,
∵∠OGD=135°,
∴∠EPF=45°,即△PHF為等腰直角三角形,
設(shè)GE=GF=t,則GK=FK=EH= t,
∴PH=HF=EK=EG+GK=t+ t,
∴PE=PH+EH=t+ t+ t=4,
解得t=4 ﹣4,
則OE=3﹣t=7﹣4 ,
∴P2(7﹣4 ,4)
(c)∵A(4,0),B(2,4),
∴可求得直線AB解析式為:y=﹣2x+8;
聯(lián)立y=﹣2x+8與y=x﹣3,解得x= ,y= .
設(shè)直線BA與直線l交于點(diǎn)K,則K( , ).
當(dāng)點(diǎn)P在線段BK上時(shí),如答圖2﹣3所示.
設(shè)P(a,8﹣2a)(2≤a≤ ),則Q(a,a﹣3),
∴PE=8﹣2a,PQ=11﹣3a,
∴PF= (11﹣3a).
與a)同理,可求得:EF= .
若PE=PF,則8﹣2a= (11﹣3a),解得a=1﹣2 <0,故此種情形不存在;
若PF=EF,則PF= ,整理得PE= PF,即8﹣2a= (11﹣3a),解得a=3,符合條件,此時(shí)P3(3,2);
若PE=EF,則PE= ,整理得PF= PE,即 (11﹣3a)= (8﹣2a),解得a=5> ,故此種情形不存在.
(c)當(dāng)點(diǎn)P在線段KA上時(shí),如答圖2﹣4所示.
∵PE、PF夾角為135°,
∴只可能是PE=PF成立.
∴點(diǎn)P在∠KGA的平分線上.
設(shè)此角平分線與y軸交于點(diǎn)M,過點(diǎn)M作MN⊥直線l于點(diǎn)N,則OM=MN,MD= MN,
由OD=OM+MD=3,可求得M(0,3﹣3 ).
又因?yàn)镚(3,0),
可求得直線MG的解析式為:y=( ﹣1)x+3﹣3 .
聯(lián)立直線MG:y=( ﹣1)x+3﹣3 與直線AB:y=﹣2x+8,
可求得:P4(1+2 ,6﹣4 ).
(e)當(dāng)點(diǎn)P在OA邊上時(shí),此時(shí)PE=0,等腰三角形不存在.
綜上所述,存在滿足條件的點(diǎn)P,點(diǎn)P坐標(biāo)為:(0,3)、(3,2)、(7﹣4 ,4)、(1+2 ,6﹣4 ).
【解析】(1)利用待定系數(shù)法求出拋物線的解析式;(2)①如答圖1,作輔助線,利用關(guān)系式S△OPH=S△OMH﹣S△OMP求解;②本問涉及復(fù)雜的分類討論,如答圖2所示.由于點(diǎn)P可能在OC、BC、BK、AK、OA上,而等腰三角形本身又有三種情形,故討論與計(jì)算的過程比較復(fù)雜,需要耐心細(xì)致、考慮全面.
【考點(diǎn)精析】掌握二次函數(shù)的性質(zhì)是解答本題的根本,需要知道增減性:當(dāng)a>0時(shí),對(duì)稱軸左邊,y隨x增大而減小;對(duì)稱軸右邊,y隨x增大而增大;當(dāng)a<0時(shí),對(duì)稱軸左邊,y隨x增大而增大;對(duì)稱軸右邊,y隨x增大而減。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=(x﹣m)2﹣(x﹣m),其中m是常數(shù).
(1)求證:不論m為何值,該拋物線與x軸一定有兩個(gè)公共點(diǎn);
(2)若該拋物線的對(duì)稱軸為直線x= . ①求該拋物線的函數(shù)解析式;
②把該拋物線沿y軸向上平移多少個(gè)單位長(zhǎng)度后,得到的拋物線與x軸只有一個(gè)公共點(diǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某鎮(zhèn)水庫的可用水量為12000萬立方米,假設(shè)年降水量不變,能維持該鎮(zhèn)16萬人20年的用水量.實(shí)施城市化建設(shè),新遷入4萬人后,水庫只夠維持居民15年的用水量.
(1)問:年降水量為多少萬立方米?每人年平均用水量多少立方米?
(2)政府號(hào)召節(jié)約用水,希望將水庫的保用年限提高到25年,則該鎮(zhèn)居民人均每年需節(jié)約多少立方米才能實(shí)現(xiàn)目標(biāo)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將△ABC繞點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn)θ度,并使各邊長(zhǎng)變?yōu)樵瓉淼膎倍,得△AB′C′,即如圖①,我們將這種變換記為[θ,n].
(1)如圖①,對(duì)△ABC作變換[60°, ]得△AB′C′,則S△AB′C′:S△ABC=;直線BC與直線B′C′所夾的銳角為度;
(2)如圖②,△ABC中,∠BAC=30°,∠ACB=90°,對(duì)△ABC 作變換[θ,n]得△AB′C′,使點(diǎn)B、C、C′在同一直線上,且四邊形ABB'C'為矩形,求θ和n的值;
(3)如圖③,△ABC中,AB=AC,∠BAC=36°,BC=1,對(duì)△ABC作變換[θ,n]得△AB′C′,使點(diǎn)B、C、B′在同一直線上,且四邊形ABB′C′為平行四邊形,求θ和n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在四邊形ABCD中,∠DAB被對(duì)角線AC平分,且AC2=ABAD.我們稱該四邊形為“可分四邊形”,∠DAB稱為“可分角”.
(1)如圖2,在四邊形ABCD中,∠DAB=60°,AC平分∠DAB,且∠BCD=150°,求證:四邊形ABCD為“可分四邊形”;
(2)如圖3,四邊形ABCD為“可分四邊形”,∠DAB為“可分角”,如果∠DCB=∠DAB,則求∠DAB的度數(shù);
(3)現(xiàn)有四邊形ABCD為“可分四邊形”,∠DAB為“可分角”,且AC=4,則△DAB的最大面積等于 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=10cm,BC=6cm,AC=8cm,BD是∠ABC的角平分線。
(1)求△ABC的面積;
(2)求△ABC的角平分線BD的長(zhǎng);
(3)若點(diǎn)E是線段AB上的一個(gè)動(dòng)點(diǎn),從點(diǎn)B以每秒2cm的速度向A運(yùn)動(dòng),幾秒種后△EAD是直角三角形?(此小題可直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】九(3)班為了組隊(duì)參加學(xué)校舉行的“五水共治”知識(shí)競(jìng)賽,在班里選取了若干名學(xué)生,分成人數(shù)相同的甲、乙兩組,進(jìn)行了四次“五水共治”模擬競(jìng)賽,成績(jī)優(yōu)秀的人數(shù)和優(yōu)秀率分別繪制成如圖統(tǒng)計(jì)圖.
根據(jù)統(tǒng)計(jì)圖,解答下列問題:
(1)第三次成績(jī)的優(yōu)秀率是多少?并將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)已求得甲組成績(jī)優(yōu)秀人數(shù)的平均數(shù) =7,方差 =1.5,請(qǐng)通過計(jì)算說明,哪一組成績(jī)優(yōu)秀的人數(shù)較穩(wěn)定?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】射線QN與等邊△ABC的兩邊AB,BC分別交于點(diǎn)M,N,且AC∥QN,AM=MB=2cm,QM=4cm.動(dòng)點(diǎn)P從點(diǎn)Q出發(fā),沿射線QN以每秒1cm的速度向右移動(dòng),經(jīng)過t秒,以點(diǎn)P為圓心, cm為半徑的圓與△ABC的邊相切(切點(diǎn)在邊上),請(qǐng)寫出t可取的一切值(單位:秒)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC在平面直角坐標(biāo)系中的位置如圖所示.
(1)作△ABC關(guān)于原點(diǎn)O成中心對(duì)稱的△A1B1C1 .
(2)請(qǐng)寫出點(diǎn)B關(guān)于y軸對(duì)稱的點(diǎn)B2的坐標(biāo) . 若將點(diǎn)B2向下平移h單位,使其落在△A1B1C1內(nèi)部(不包括邊界),直接寫出h的值(寫出滿足的一個(gè)即可).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com