已知平面直角坐標(biāo)系xOy中點(diǎn)A坐標(biāo)為(,1),將線段OA繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°,點(diǎn)A的對(duì)應(yīng)點(diǎn)A′的坐標(biāo)為( )
A.(1,-
B.(,-1)
C.(-1,
D.(-,1)
【答案】分析:如圖,過(guò)A、A′兩點(diǎn)分別作x軸,y軸的垂線,垂足為B、C,由旋轉(zhuǎn)90°可知,△OAB≌△OA′C,則A′C=AB=1,CO=OB=,由此確定點(diǎn)A′的坐標(biāo).
解答:解:如圖,過(guò)A、A′兩點(diǎn)分別作x軸,y軸的垂線,垂足為B、C,
∵線段OA繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°,
∴∠AOA′=∠BOC=90°,
∴∠AOB=∠A′OC,且OA=OA′,∠ABO=∠A′CO=90°,
∴△OAB≌△OA′C,即A′C=AB=1,CO=OB=,
∴A′(1,-).
故選A.
點(diǎn)評(píng):本題考查了點(diǎn)的坐標(biāo)與旋轉(zhuǎn)變換的關(guān)系.關(guān)鍵是根據(jù)旋轉(zhuǎn)的條件,確定全等三角形.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

21、已知平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(2,2),B(1,-1),C(3,0).
(1)在圖1中,畫(huà)出以點(diǎn)O為位似中心,放大△ABC到原來(lái)2倍的△A′B′C′;
(2)若點(diǎn)P是AB邊上一點(diǎn),平移△ABC后,點(diǎn)P的對(duì)應(yīng)點(diǎn)的坐標(biāo)是P′(a+3,b-2),在圖2中畫(huà)出平移后的△A′B′C′.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

4、已知平面直角坐標(biāo)系中點(diǎn)p(3,2),若將點(diǎn)P先沿x軸方向向右平移2個(gè)單位,再將它沿y軸方向向下平移1個(gè)單位,到達(dá)點(diǎn)Q處,則點(diǎn)Q的坐標(biāo)為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知平面直角坐標(biāo)系中有一線段AB,其中A(1,3)B(4,5),若A、B縱坐標(biāo)不變,橫坐標(biāo)擴(kuò)大為原來(lái)的2倍,則線段AB
 
向拉長(zhǎng)為原來(lái)的
 
倍,若點(diǎn)A、B縱坐標(biāo)不變,橫坐標(biāo)變成原來(lái)的
12
,則線段AB
 
向縮短為原來(lái)的
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知平面直角坐標(biāo)系,A、B兩點(diǎn)的坐標(biāo)分別為A(2,-3),B(4,-1).若C(a,0),D(a+3,0)是x軸上的兩個(gè)動(dòng)點(diǎn),則當(dāng)a=
5
4
5
4
時(shí),四邊形ABDC的周長(zhǎng)最短.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•上海)已知平面直角坐標(biāo)系xOy(如圖),直線y=
1
2
x+b
經(jīng)過(guò)第一、二、三象限,與y軸交于點(diǎn)B,點(diǎn)A(2,t)在這條直線上,聯(lián)結(jié)AO,△AOB的面積等于1.
(1)求b的值;
(2)如果反比例函數(shù)y=
k
x
(k是常量,k≠0)的圖象經(jīng)過(guò)點(diǎn)A,求這個(gè)反比例函數(shù)的解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案