精英家教網 > 初中數學 > 題目詳情

如圖1,已知正方形ABCD內一點O,OD=1,OA=2,OB=3,把△OAB繞著點A逆時針旋轉90°得到△PAD如圖.

(1)求點O到點P的距離.

(2)求∠AOD的度數.

解:(1)連接OP,
∵△OAB繞著點A逆時針旋轉90°,
∴AO=AP,∠PAO=90°,
∴△OPA為等腰直角三角形,
∴PO==2;

(2)由旋轉的性質可知,PD=OB=3,而OD=1,
在△POD中,∵PO2+OD2=8+1=9,
PD2=9,
∴PO2+OD2=PD2,
△POD為直角三角形,即∠POD=90°,
又∵△OPA為等腰直角三角形,∠POA=45°,
∴∠AOD=∠POD+∠POA=90°+45°=135°.
分析:(1)連接OP,由旋轉的性質證明△OPA為等腰直角三角形,利用勾股定理求OP即可;
(2)利用勾股定理的逆定理證明△OPD為直角三角形,可求∠AOD的度數.
點評:本題考查了旋轉的性質,勾股定理及正方形性質的運用.關鍵是作輔助線,將問題轉化為兩個特殊三角形求邊長及角的度數.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

14、如圖1,已知正方形ABCD的邊CD在正方形DEFG的邊DE上,連接AE,GC.

(1)試猜想AE與GC有怎樣的位置關系,并證明你的結論;
(2)將正方形DEFG繞點D按順時針方向旋轉,使點E落在BC邊上,如圖2,連接AE和GC.你認為(1)中的結論是否還成立?若成立,給出證明;若不成立,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

作圖題
(1)如圖1,已知?ABCD兩邊長分別是1和2,一個內角為60°,將?ABCD剪一刀成兩部分,并拼成一個等腰三角形.要求在原圖上畫出剪切線和組成的等腰三角形,并填寫等腰三角形的周長(本題不限作圖工具)
圖1,周長=
6
6
                      
圖2,周長=
2+2
17
2+2
17

(2)如圖2,已知正方形ABCD邊長為2,將正方形剪兩刀成三部分,并拼成一個等腰非直角三角形,要求在原圖上畫出剪切線和拼成的三角形,并填出等腰三角形的周長.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•孝感)如圖1,已知正方形ABCD的邊長為1,點E在邊BC上,若∠AEF=90°,且EF交正方形外角的平分線CF于點F.
(1)圖1中若點E是邊BC的中點,我們可以構造兩個三角形全等來證明AE=EF,請敘述你的一個構造方案,并指出是哪兩個三角形全等(不要求證明);
(2)如圖2,若點E在線段BC上滑動(不與點B,C重合).
①AE=EF是否總成立?請給出證明;
②在如圖2的直角坐標系中,當點E滑動到某處時,點F恰好落在拋物線y=-x2+x+1上,求此時點F的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

(1)如圖1,已知正方形ABCD與正方形DEFG,點A、D、E三點共線,則S△ADG
=
=
S△DCE(填“>”,“<”或“=”)
(2)如圖2,將圖1中正方形DEFG繞點D,逆時針轉到如圖的位置,則S△ADG
=
=
S△DCE(填“>”,“<”或“=”)
請說明理由.
(3)如圖3,以△ABC三邊向外作三個正方形,分別為正方形AEDC、正方形CFGB正方形ABHK,并且△ABC的邊AC長為5,邊AB長為4,則三角形AKE,三角形CDF,三角形BGH的面積和的最大值為
30
30

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖1,已知正方形OABC的邊長為4,等腰直角三角板OEF的直角邊OE、OF分別在OA、OC上,且OE=2.將三角板OEF繞點O逆時針旋轉至OE1F1的位置,旋轉角為α,連接CF1、AE1
(1)請在圖2中畫出三夾板OEF逆時針旋轉90°時的圖形,并直接判斷此時△OAE1與△OCF1是否全等.
(2)當0°<α<90°時,∠OAE1與∠OCF1是否總有上述關系并加以證明;
(3)若三角板OEF繞O點逆時針旋轉一周,是否存在某一位置,使得OE1∥CF1?若存在,請求出旋轉角α的度數;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案