精英家教網(wǎng)如圖,菱形ABCD的對角線AC與BD相交于點O,已知AB=13cm,AC=24cm.
(1)求:菱形ABCD的面積;
(2)如過點D作DE⊥BC,垂足為E,求DE的長.
分析:(1)在Rt△AOB中,AO2+BO2=AB2,從而求出BO,繼而得出BD,根據(jù)菱形的面積等于對角線乘積的一半可得出答案.
(2)菱形的面積還等于底乘以高,所以可得.
解答:解:(1)∵四邊形ABCD是菱形,
∴AO=OC,BO=DO,AC⊥BD
∵AC=24,AO=
1
2
AC=12,
在Rt△AOB中,AO2+BO2=AB2,
又AB=13,
∴BO=
132-122
=5,
∴BD=10,
∴S菱形ABCD=
1
2
AC•BD=
1
2
×10×24=120,
∴菱形ABCD的面積為120cm2
(2)∵
1
2
DB×OC=BC×DE,
∴DE=
120
13
,
∴DE的長為
120
13
cm.
點評:本題考查菱形的性質(zhì),屬于中等難度的題目,解答本題關鍵是掌握①菱形的對角線互相垂直且平分,②菱形的面積等于底乘以底邊上的高,還等于對角線乘積的一半.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,菱形ABCD的邊長為2,∠ABC=45°,則點D的坐標為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,菱形ABCD的對角線AC=6,BD=8,∠ABD=α,則下列結論正確的是( 。
A、sinα=
4
5
B、cosα=
3
5
C、tanα=
4
3
D、tanα=
3
4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,菱形ABCD的邊長為6且∠DAB=60°,以點A為原點、邊AB所在的直線為x軸且頂點D在第一象限建立平面直角坐標系.動點P從點D出發(fā)沿折線DCB向終點B以2單位/每秒的速度運動,同時動點Q從點A出發(fā)沿x軸負半軸以1單位/秒的速度運動,當點P到達終點時停止運動,運動時間為t,直線PQ交邊AD于點E.
(1)求出經(jīng)過A、D、C三點的拋物線解析式;
(2)是否存在時刻t使得PQ⊥DB,若存在請求出t值,若不存在,請說明理由;
(3)設AE長為y,試求y與t之間的函數(shù)關系式;
(4)若F、G為DC邊上兩點,且點DF=FG=1,試在對角線DB上找一點M、拋物線ADC對稱軸上找一點N,使得四邊形FMNG周長最小并求出周長最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,菱形ABCD的邊長為8cm,∠B=60°,P、Q同時從A點出發(fā),點P以1cm/秒的速度沿A→C→B的方向運動,點Q以2cm/秒的速度沿A→B→C→D的方向運動.當點Q運動到D點時,P、Q兩點同時停止運動.設P、Q運動的時間為x秒,△APQ與△ABC重疊部分的面積為ycm2(規(guī)定:點和線段是面積為0的三角形).
(1)當x=
8
8
秒時,P和Q相遇;
(2)當x=
(12-4
3
(12-4
3
秒時,△APQ是等腰直角三角形;
(3)當x=
32
3
32
3
秒時,△APQ是等邊三角形;
(4)求y關于x的函數(shù)關系式,并求y的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,菱形ABCD的周長為8cm,∠ABC:∠BAD=2:1,對角線AC、BD相交于點O,求BD及AC的長.

查看答案和解析>>

同步練習冊答案