如圖,在直角梯形ABCD中,∠BCD=90°,AD∥BC,M、N分別為BD、AC的中點(diǎn),AB=4,AD=2,∠ABC=60°,則CD的長(zhǎng)為________,MN的長(zhǎng)為________.

2    1
分析:過(guò)A點(diǎn)作AE⊥BC,垂足為E,延長(zhǎng)NM交AB于F,根據(jù)直角梯形的性質(zhì)可知AE=CD,在Rt△AEB中,AB=4,∠ABC=60°,求出AE的長(zhǎng),于是求出CD的長(zhǎng),根據(jù)題干條件可以求出FN是三角形ABC的中位線,MF是三角形ABD的中位線,根據(jù)中位線的知識(shí)求出FN和FM的長(zhǎng),于是即可求出MN的長(zhǎng).
解答:解:過(guò)A點(diǎn)作AE⊥BC,垂足為E,延長(zhǎng)NM交AB于F,
∵直角梯形ABCD中,∠BCD=90°,AD∥BC,
∴AE=CD,
在Rt△AEB中,AB=4,∠ABC=60°,
∴sin∠ABE==,
∴AE=2
∴CD=2,
∴BE=2,
∵M(jìn)、N分別為BD、AC的中點(diǎn),
∴F點(diǎn)也是AB的中點(diǎn),
∴FN是三角形ABC的中位線,
∴FN=BC=(BE+EC)=(2+2)=2,
∵M(jìn)F是三角形ABD的中位線,
∴FM=AD=1,
∴MN=FN-FM=1.
故答案為2、1.
點(diǎn)評(píng):本題主要考查直角梯形和三角形中位線定理的知識(shí)點(diǎn),解答本題的關(guān)鍵是熟練掌握正方形的性質(zhì)和三角形中位線的相關(guān)知識(shí),此題難度不大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

20、如圖,在直角梯形ABCD中,AD∥BC,CD⊥BC,E為BC邊上的點(diǎn).將直角梯形ABCD沿對(duì)角線BD折疊,使△ABD與△EBD重合(如圖中陰影所示).若∠A=130°,AB=4cm,則梯形ABCD的高CD≈
3.1
cm.(結(jié)果精確到0.1cm)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在直角梯形ABCD中,AB∥DC,∠D=90°,AC⊥BC,AB=10cm,BC=6cm,F(xiàn)點(diǎn)以2cm/秒的速度在線段AB上由A向B勻速運(yùn)動(dòng),E點(diǎn)同時(shí)以1cm/秒的速度在線段BC上由B向C勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒(0<t<5).
(1)求證:△ACD∽△BAC;
(2)求DC的長(zhǎng);
(3)設(shè)四邊形AFEC的面積為y,求y關(guān)于t的函數(shù)關(guān)系式,并求出y的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1998•大連)如圖,在直角梯形ABCD中.AD∥BC,DC⊥BC,且BC=3AD.以梯形的高AE為直徑的⊙O交AB于點(diǎn)F,交CD于點(diǎn)G、H.過(guò)點(diǎn)F引⊙O的切線交BC于點(diǎn)N.
(1)求證:BN=EN;
(2)求證:4DH•HC=AB•BF;
(3)設(shè)∠GEC=α.若tan∠ABC=2,求作以tanα、cotα為根的一元二次方程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在直角梯形ABCD中,DC∥AB,∠ADC=90°,AB=3a,CD=2a,AD=2,點(diǎn)E、F分別是腰AD、BC上的動(dòng)點(diǎn),點(diǎn)G在AB上,且四邊形AEFG是矩形.設(shè)FG=x,矩形AEFG的面積為y.
(1)求y與x之間的函數(shù)關(guān)式,并寫出自變量x的取值范圍;
(2)在腰BC上求一點(diǎn)F,使梯形ABCD的面積是矩形AEFG的面積的2倍,并求出此時(shí)BF的長(zhǎng);
(3)當(dāng)∠ABC=60°時(shí),矩形AEFG能否為正方形?若能,求出其邊長(zhǎng);若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在直角梯形ABCD中,AB∥CD,∠C=90°,AB=6cm,CD=10cm,AD=5cm,動(dòng)點(diǎn)P、Q分別從點(diǎn)A、C同時(shí)出發(fā),點(diǎn)P以2cm/s的速度向點(diǎn)B移動(dòng),點(diǎn)Q以1cm/s的速度向點(diǎn)D移動(dòng),當(dāng)一個(gè)動(dòng)點(diǎn)到達(dá)終點(diǎn)時(shí)另一個(gè)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng).
(1)經(jīng)過(guò)幾秒鐘,點(diǎn)P、Q之間的距離為5cm?
(2)連接PD,是否存在某一時(shí)刻,使得PD恰好平分∠APQ?若存在,求出此時(shí)的移動(dòng)時(shí)間;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案