分析 (1)首先證明△ABC是等邊三角形,進(jìn)而得出∠AEC=90°,四邊形AECF是平行四邊形,即可得出答案;
(2)利用勾股定理得出AE的長,進(jìn)而求出菱形的面積.
解答 (1)證明:∵四邊形ABCD是菱形,
∴AB=BC,
又∵AB=AC,
∴△ABC是等邊三角形,
∵E是BC的中點,
∴AE⊥BC(等腰三角形三線合一),
∴∠AEC=90°,
∵E、F分別是BC、AD的中點,
∴AF=$\frac{1}{2}$AD,EC=$\frac{1}{2}$BC,
∵四邊形ABCD是菱形,
∴AD∥BC且AD=BC,
∴AF∥EC且AF=EC,
∴四邊形AECF是平行四邊形(一組對邊平行且相等的四邊形是平行四邊形),
又∵∠AEC=90°,
∴四邊形AECF是矩形(有一個角是直角的平行四邊形是矩形);
(2)解:在Rt△ABE中,AE=$\sqrt{{6}^{2}-{3}^{2}}$=3$\sqrt{3}$,
所以,S菱形ABCD=6×3$\sqrt{3}$=18$\sqrt{3}$.
點評 此題主要考查了矩形的判定以及菱形的性質(zhì)與面積求法,正確掌握矩形的判定方法是解題關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 1:4 | B. | 1:8 | C. | 1:5 | D. | 1:7 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | x=4 | B. | x≠4 | C. | x=-4 | D. | x≠-4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | 2 | C. | 1 | D. | 5 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com