【題目】如圖,四邊形ABCD是平行四邊形,以AB為直徑的⊙O經(jīng)過點(diǎn)D,E⊙O

上一點(diǎn),且∠AED=45°。

1)判斷CD⊙O的位置關(guān)系,并說明理由;

2)若⊙O的半徑為6cmAE=10cm,求∠ADE的正弦值。

【答案】1CD⊙O相切,理由見解析(2

【解析】

解:(1)連接BD,OD,

∵AB是直徑,∴∠ADB=90°。

∵∠ABD=∠E=45°,∴∠DAB=45°,則AD=BD

∴△ABD是等腰直角三角形。∴OD⊥AB。

∵DC∥AB,∴OD⊥DC, ∴CD⊙O相切。

2)過點(diǎn)OOF⊥AE,連接OE

AF=AE=×10=5。

∵OA=OE,∴∠AOF=∠AOE。

∵∠ADE=∠AOE,∴∠ADE=∠AOF

Rt△AOF中,sin∠AOF=,

∴sin∠ADE= sin∠AOF =

1)連接OD,BD,由AB為直徑,∠AED=45°,證得△ABD是等腰直角三角形,即AD=BD,

然后由等腰三角形的性質(zhì),可得OD⊥AB,又由四邊形ABCD是平行四邊形,即可證得OD⊥CD,即可

證得CD⊙O相切。

2)過點(diǎn)OOF⊥AE,連接OE,由垂徑定理可得AF=6,∠AOF=∠AOE,又由圓周角定理

可得∠ADE=∠AOE,從而證得∠AOF=∠ADE,然后在Rt△AOF中,求得sin∠AOF的值,即可求得

答案。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】每年的農(nóng)歷三月初一為通州風(fēng)箏節(jié).這天,同學(xué)正在江海明珠廣場上放風(fēng)箏,如圖風(fēng)箏從A處起飛,幾分鐘后便飛達(dá)C處,此時,在AQ延長線上B處的小宋同學(xué),發(fā)現(xiàn)自己的位置與風(fēng)箏和廣場邊旗桿PQ的頂點(diǎn)P在同一直線上.

(1)已知旗桿高10米,若在B處測得旗桿頂點(diǎn)P的仰角為30°,A處測得點(diǎn)P的仰角為45°,試求A、B之間的距離;

(2)此時,在A處背向旗桿又測得風(fēng)箏的仰角為75°,若繩子在空中視為一條線段,求繩子AC為多少米?(結(jié)果可保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】鳳城中學(xué)九年級(3)班的班主任讓同學(xué)們?yōu)榘鄷顒釉O(shè)計(jì)一個摸球方案,這些球除顏色外都相同,擬使中獎概率為50%

1)小明的設(shè)計(jì)方案:在一個不透明的盒子中,放入黃、白兩種顏色的球共6個,攪勻后從中任意摸出1個球,摸到黃球則表示中獎,否則不中獎.如果小明的設(shè)計(jì)符合老師要求,則盒子中黃球應(yīng)有   個,白球應(yīng)有   個;

2)小兵的設(shè)計(jì)方案:在一個不透明的盒子中,放入2個黃球和1個白球,攪勻后從中任意摸出2個球,摸到的2個球都是黃球則表示中獎,否則不中獎,該設(shè)計(jì)方案是否符合老師的要求?試說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線y=﹣2x經(jīng)過點(diǎn)P(﹣2,a),點(diǎn)P關(guān)于y軸的對稱點(diǎn)P′在反比例函數(shù)yk≠0)的圖象上.

1)求反比例函數(shù)的解析式;

2)直接寫出當(dāng)y4x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)生產(chǎn)并銷售某種產(chǎn)品,假設(shè)銷售量與產(chǎn)量相等,如圖中的折線ABD、線段CD分別表示該產(chǎn)品每千克生產(chǎn)成本(單位:元)、銷售價(單位:元)與產(chǎn)量x(單位:kg)之間的函數(shù)關(guān)系.

1)請解釋圖中點(diǎn)D的橫坐標(biāo)、縱坐標(biāo)的實(shí)際意義;

2)求線段AB所表示的x之間的函數(shù)表達(dá)式;

3)當(dāng)該產(chǎn)品產(chǎn)量為多少時,獲得的利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某人在D處測得山頂C的仰角為37°,向前走100米來到山腳A處,測得山坡AC的坡度為i=1:0.5,求山的高度(不計(jì)測角儀的高度,參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是某地區(qū)一條公路隧道入口在平面直角坐標(biāo)系中的示意圖,點(diǎn)AA1、點(diǎn)BB1分別關(guān)于y軸對稱.隧道拱部分BCB1為一段拋物線,最高點(diǎn)C離路面AA1的距離為8 m,點(diǎn)B離路面AA1的距離為6 m,隧道寬AA116 m.

(1)求隧道拱部分BCB1對應(yīng)的函數(shù)表達(dá)式.

(2)現(xiàn)有一大型貨車,裝載某大型設(shè)備后,寬為4 m,裝載設(shè)備的頂部離路面均為7 m,問:它能否安全通過這個隧道?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCO為矩形,點(diǎn)A在x軸上,點(diǎn)C在y軸上,且點(diǎn)B的坐標(biāo)為(2,1),將此矩形繞點(diǎn)O逆時針旋轉(zhuǎn)90°得矩形DEFO,拋物線y=-x2+bx+c過B、E兩點(diǎn).

(1)求此拋物線的函數(shù)解析式.

(2)將矩形DEFO向右平移,當(dāng)點(diǎn)E的對應(yīng)點(diǎn)E’在拋物線上時,求線段DF掃過的面積.

(3)若將矩形ABCO向上平移d個單位長度后,能使此拋物線的頂點(diǎn)在此矩形的邊上,求d的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,二次函數(shù)的圖象交坐標(biāo)軸于 A(﹣1,0),B4,0),C

0,﹣4)三點(diǎn),點(diǎn) P 是直線 BC 下方拋物線上一動點(diǎn).

1 求這個二次函數(shù)的解析式;

2 是否存在點(diǎn) P,使POC 是以 OC 為底邊的等腰三角形?若存在,求出 P 點(diǎn)坐標(biāo);若不存在,請說明理由;

3 在拋物線上是否存在點(diǎn) D(與點(diǎn) A 不重合)使得 SDBCSABC,若存在,求出點(diǎn) D的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案